
On the Complexity of Intersection

Non-Emptiness Problems

by

Michael Wehar

December 1, 2016

A dissertation submitted to the Faculty of the Graduate School of

the University at Buffalo, State University of New York

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Engineering

mailto:mwehar@buffalo.edu
http://www.cse.buffalo.edu

c© Copyright by

Michael Wehar

December 1, 2016

All rights reserved

ii

Acknowledgements

I wouldn’t have been able to complete this work without the loving

support of my family, girlfriend, and friends. In addition, I’m grateful

for the guidance of my advisor Kenneth Regan and the tremendous

community at University at Buffalo.

I would like to thank a few especially supportive collaborators,

friends, and acquaintances whose kindness and encouragement signifi-

cantly helped me throughout my research pursuits. Thank you Michael

Blondin, Dmitry Chistikov, James Clay, Chaowen Guan, Andrew Hughes,

Joseph Swernofsky, and Chen Xu. In addition, I would like to thank my

thesis committee including Atri Rudra and Hung Ngo, all of my collab-

orators, and all those from Carnegie Mellon University who supported

me on an honors thesis of the same topic.

iii

Contents

Abstract vii

1 Introduction 1

1.1 Formal Statement . 1

1.2 Motivation . 1

1.3 History . 2

1.3.1 Intersection Non-Emptiness 2

1.3.2 Related Problems . 3

2 Preliminaries 5

2.1 Turing Machines . 5

2.2 Complexity . 6

2.2.1 Complexity Measures . 6

2.2.2 Complexity Classes . 7

2.2.3 Acceptance Problems . 8

2.3 Parameterized Complexity . 9

2.3.1 Parameterized Reductions 9

2.3.2 Parameterized Complexity Classes 11

2.4 Intersection Non-Emptiness . 13

2.4.1 General Formulation . 13

2.4.2 Naming Conventions and Problems 13

iv

CONTENTS

3 Results for Space Complexity 15

3.1 Non-Deterministic Logspace . 15

3.1.1 Deterministic Finite Automata 15

3.1.2 Multi-Pass Automata . 18

3.2 Deterministic Logspace . 20

3.2.1 Symmetric Automata . 20

4 Results for Time Complexity 25

4.1 Polynomial Time . 25

4.1.1 Pushdown Automata . 25

4.1.2 Multi-Stack Pushdown Automata 28

4.1.3 Tree Automata . 31

4.2 Exponential Time . 34

4.2.1 Pushdown Tree Automata 34

5 Results for Time-Space Complexity 39

5.1 Deterministic Linear Time and Logspace 39

5.1.1 Acyclic Automata . 39

5.2 Alternating Linear Time and Logspace 41

5.2.1 Acyclic Tree Automata . 41

6 Results for the W Hierarchy 44

6.1 Results for W[1] . 44

6.1.1 Tree Shaped Automata . 44

6.2 Results for W[NL] . 48

6.2.1 Acyclic Automata . 48

7 Lower Bounds 51

7.1 Unconditional Lower Bounds . 51

7.1.1 Space Complexity . 51

7.1.2 Time Complexity . 53

7.2 Conditional Lower Bounds . 54

v

CONTENTS

7.2.1 Complexity Class Separations 54

7.2.2 QBF-Hardness . 57

7.2.3 SAT-Hardness . 59

8 Conclusion 62

8.1 Summary of Results . 62

8.2 Further Work . 64

Bibliography 66

vi

Abstract

A central problem in formal language theory is deciding whether

a finite list of regular languages has a non-empty intersection. That is,

given a finite list of DFA’s (deterministic finite automata), does there

exist a string that satisfies all of the DFA’s? This problem is known as

the intersection non-emptiness problem for finite automata.

Intersection non-emptiness can be viewed as a constraint satisfac-

tion problem. In particular, we can view each automaton as verifying

some constraint. Then, determining if there exists a string that satisfies

all of the automata is equivalent to determining if there exists a string

that satisfies all of the constraints. Also, intersection non-emptiness can

be viewed as a graph reachability problem. In particular, we can con-

sider the Cartesian product of all of the automata. Then, determining

if there exists a string that satisfies all of the automata is equivalent to

determining if there exists a directed path from the start state to a final

state in the product automaton.

The dual nature of intersection non-emptiness as both a constraint

satisfaction problem and a graph reachability problem allows us to build

parameterized reductions from fundamentally hard problems to intersec-

tion non-emptiness. These parameterized reductions allow us to char-

acterize classical time and space complexity classes. In this thesis, we

examine intersection non-emptiness problems for various kinds of au-

tomata in an effort to comprehensively characterize the classical time

and space complexity classes.

vii

1

Introduction

1.1 Formal Statement

We investigate problems where we are given an encoding of a finite list of automata

and want to determine whether there exists a string that satisfies each automaton in

the list. A problem of this form is referred to as an intersection non-emptiness prob-

lem (IE) because it is equivalent to determining whether the languages associated

with the automata have a non-empty intersection.

Consider the following classical intersection non-emptiness problem for deter-

ministic finite automata. Given a finite list of DFA’s, does there exist a string that

simultaneously satisfies all of the DFA’s? This problem is equivalent to determining

if the regular languages corresponding to the DFA’s have a non-empty intersection.

1.2 Motivation

Intersection non-emptiness is motivated as a constraint satisfaction problem and a

graph reachability problem.

Constraint Satisfaction: To determine whether a mathematical object exists

one could start by listing constraints for the proposed object to satisfy. Then, for

each constraint one could build a verifier to computationally determine whether an

input satisfies the constraint. If each constraint can be verified by an automaton,

1

1. INTRODUCTION

does that mean one could efficiently determine whether there exists an object that

satisfies all of the constraints?

Graph Reachability: The Cartesian product construction is a classical con-

struction that is used for showing that regular languages are closed under inter-

section [55]. The idea is that given two DFA’s D1 and D2, there exists a product

DFA D such that L(D) = L(D1)∩L(D2). Therefore, determining whether D1 and

D2 have a non-empty intersection is equivalent to determining if the product has a

non-empty language. In other words, D1 and D2 have a non-empty intersection if

and only if there exists a path in the product automaton’s state diagram from the

start state to a final state.

Hardness: We assert that intersection non-emptiness is a fundamentally hard

problem. We justify this assertion by exploiting the dual nature of intersection non-

emptiness as a constraint satisfaction problem and a graph reachability problem to

build reductions from Turing machine acceptance problems to intersection non-

emptiness problems. In particular, we construct finite automata that collectively

verify whether an input string is accepted by a Turing machine. We express the

Turing machine acceptance as graph reachability and break the reachability into

distinct constraints that can be verified by distinct automata. Using this approach,

we are able to characterize classical time and space complexity classes.

1.3 History

1.3.1 Intersection Non-Emptiness

Kozen (1977) showed that the intersection non-emptiness problem for DFA’s (de-

terministic finite automata) is PSPACE-complete [39]. Kasai and Iwata (1985)

showed that solving intersection non-emptiness for k DFA’s is equivalent to sim-

ulating a k log(n)-space bounded non-deterministic Turing machine with a binary

work tape alphabet [37]. Next, Lange and Rossmanith (1992) showed that if we con-

strain k (the number of DFA’s) to be log(n), then IED becomes NSPACE(log2(n))-

complete [45]. Then, Karakostas, Lipton, and Viglas (2003) connected the hardness

2

1. INTRODUCTION

of intersection non-emptiness to the hardness of Boolean Satisfiability [36]. They

showed that if the parameterized intersection problem for k DFA’s is solvable in

no(k) time, then the exponential time hypothesis is false1. Further, they investi-

gated a variation of the problem with k + 1 DFA’s where one DFA is much larger

than the other k DFA’s. They denoted the size of the larger DFA by m and the

size of the largest of the smaller DFA’s by n. They showed that if this version of

intersection non-emptiness is solvable in m · no(k) time, then NL ⊆ DTIME(n1+ε)

for all ε > 0.

1.3.2 Related Problems

Hardness results have been established for intersection non-emptiness over restricted

classes of finite automata. Finite automata are naturally restricted either by alge-

braic properties or graphical properties.

On algebraic restrictions, Blondin (2009, 2012, 2014) extensively surveyed work

on the intersection non-emptiness problems for automata with restricted transi-

tion monoids [4, 5, 6]. However, we focus on graphical restrictions. Rampersad

and Shallit (2010) showed that intersection non-emptiness for DFA’s that accept

finite regular languages is NP-complete [56]. All such DFA’s can be represented by

acyclic DFA’s. Therefore, the intersection non-emptiness problem for acyclic DFA’s

is NP-complete. Wareham (2001) explored the complexity of an equivalent problem

referred to as the bounded DFA intersection problem. Their results on parameter-

izing based on the number of automata imply that intersection non-emptiness for

k acyclic DFA’s is W [t]-hard for all t ≥ 1 [61]. An upper bound of Cesati (2003)

implies that intersection non-emptiness for k-acyclic DFA’s is in W [P] [9].

Deterministic finite automata over a unary alphabet graphically take the form of

a pan consisting of a handle and a cycle. Such automata have also been referred to

as Tally-DFA’s. Following from results of Meyer and Stockmeyer (1973) and Galil

(1976), intersection non-emptiness for unary DFA’s is NP-complete [58, 29, 45].

Further, Fernau and Krebs (2016) considered parameterizations of the intersection

1Recent work by Fernau and Krebs (2016) expands on results of this form [26].

3

1. INTRODUCTION

non-emptiness problem for unary DFA’s by the number of DFA’s and the number of

states. They showed that the existence of faster parameterized algorithms implies

that ETH (exponential time hypothesis) is false [26].

Tree automata are a generalization of string-based automata that read labeled

trees as input in a top-down or bottom-up fasion [17]. Veanes (1997) showed that

intersection non-emptiness problem for tree automata is EXP-complete [17].

4

2

Preliminaries

2.1 Turing Machines

Whenever we use the term Turing machine, we refer to a deterministic, non-

deterministic, symmetric, or alternating tape machine. We particularly focus on

what we refer to as a binary Turing machine. Such a machine has a two-way read

only input tape and a two-way read/write work tape that is restricted to a binary

alphabet. A work tape over a binary alphabet will be referred to as a binary work

tape. A cell on a binary work tape will be referred to as a bit cell.

A Turing machine M is said to accept a language L if for all input strings x,

M accepts x if and only if x ∈ L. Further, M is said to decide L if M also halts

on all inputs. For deterministic machines, M is said to be f(n)-time bounded if for

all input strings x, M runs for at most f(n) steps on input x where n denotes the

length of x. Further, M is said to be f(n)-space bounded if for all input strings x,

M accesses at most f(n) distinct work tape cells on input x where n denotes the

length of x.

Following the convention of [11, 43], for non-deterministic and alternating ma-

chines, M is said to be f(n)-time bounded if for all accepted input strings x, there

exists an accepting computation of height at most f(n). Further, M is said to be

f(n)-space bounded if for all accepted input strings x, there exists an accepting

computation where every configuration is bounded to f(n) work tape cells.

5

2. PRELIMINARIES

2.2 Complexity

2.2.1 Complexity Measures

Complexity is typically measured relative to a resource for a class of computational

machines. For example, we measure the time complexity for deterministic Turing

machines and denote this measure by DTIME. In addition to DTIME, we have the

following time complexity measures.

NTIME : Time for non-deterministic Turing machines

ATIME : Time for alternating Turing machines

STIME : Time for symmetric Turing machines

AuxTIME : Time for deterministic auxiliary pushdown automata

AltAuxTIME : Time for alternating auxiliary pushdown automata

Also, we measure the space complexity for deterministic Turing machines and de-

note this measure by DSPACE. In addition to DSPACE, we have the following

space complexity measures.

NSPACE : Space for non-deterministic Turing machines

ASPACE : Space for alternating Turing machines

SSPACE : Space for symmetric Turing machines

AuxSPACE : Space for deterministic auxiliary pushdown automata

AltAuxSPACE : Space for alternating auxiliary pushdown automata

In some cases, we need to measure the time or space complexity for tape ma-

chines with a restricted number of tapes and alphabet size. For example, when

6

2. PRELIMINARIES

measuring complexity relative to a binary Turing machine, that is a tape machine

with a read only input tape and a single binary work tape, we use a superscript

b. In particular, the complexity measure NSPACEb measures space complexity for

non-deterministic binary Turing machines.

2.2.2 Complexity Classes

A complexity class is a set of languages. We typically define such a set of languages

by a class of resource bounded computational machines. We can specify such a class

of machines using both a complexity measure and a bound.

For example, consider the complexity class DTIME(f(n)). This set of lan-

guages is defined by the class of f(n)-time bounded deterministic Turing machines.

In particular, L ∈ DTIME(f(n)) if and only if there exists a deterministic f(n)-

time bounded Turing machine M such that M decides L. Similarly, consider the

complexity class DSPACE(f(n)). This set of languages is defined by the class of

f(n)-space bounded deterministic Turing machines. We write L ∈ DSPACE(f(n))

if and only if there exists a deterministic f(n)-space bounded Turing machine M

such that M decides L.

Consider the following list of complexity classes and their corresponding classes

7

2. PRELIMINARIES

of resource bounded computational machines.

L : Logarithmic space bounded deterministic Turing machines

SL : Logarithmic space bounded symmetric Turing machines

NL : Logarithmic space bounded non-deterministic Turing machines

AL : Logarithmic space bounded alternating Turing machines

AuxL : Logarithmic space bounded deterministic auxiliary pushdown automata

P : Polynomial time bounded deterministic Turing machines

AltAuxL : Logarithmic space bounded alternating auxiliary pushdown automata

EXP : Exponential time bounded deterministic Turing machines

2.2.3 Acceptance Problems

The general form of an acceptance problem is as follows. Given an encoding1 of a

machine M and an input x, does M accept x? For each k and each machine class

from the preceding subsection, we can define an acceptance problem. Consider the

1A time or space bounded Turing machine is encoded by the combination of a Turing machine
encoding and a resource bound. The machine rejects if it happens to try to use more resources
than the bound allows.

8

2. PRELIMINARIES

following acceptance problems and their associated machine classes.

DS
k log : k log(n)-space bounded deterministic binary Turing machines

SSk log : k log(n)-space bounded symmetric binary Turing machines

NS
k log : k log(n)-space bounded non-deterministic binary Turing machines

ASk log : k log(n)-space bounded alternating binary Turing machines

AuxSk log : k log(n)-space bounded auxiliary binary pushdown automata

DT
nk : nk-time bounded deterministic binary Turing machines

AltAuxTk log : k log(n)-space bounded alternating auxiliary binary pushdown automata

DT

2nk
: 2n

k

-time bounded deterministic binary Turing machines

2.3 Parameterized Complexity

The following section discusses a recent subfield of computational complexity theory

referred to as parameterized complexity. This field originated from works of Downey

and Fellows [20, 21] (see also [22, 27]).

2.3.1 Parameterized Reductions

A parameterized problem is a set of ordered pairs of the form (x, k) where k is

referred to as the parameter. Any parameterized problem can be identified with

an infinite family of fixed levels. Let families (k-A)k∈N and (k-B)k∈N be given. For

short, we write (k-A) and (k-B) to denote the infinite families, respectively. We say

that (k-A) is fpt-reducible to (k-B) if there exists an infinite family of reduction

functions (rk) and functions f and g such that for all k ∈ N and all instances x of

k-A, we have

x ∈ k-A ⇐⇒ rk(x) ∈ f(k)-B

and there exists a constant c such that for all k ∈ N,

rk is computable in g(k) · nc time.

9

2. PRELIMINARIES

We say that the fpt-reduction is logspace if there exists a function h such that

rk is computable using c · log(n) + h(k) · o(log(n)) bit cells of memory.

Further, we say that the ftp-reduction is uniform if the infinite family of reduction

functions is effectively computable. In parameterized complexity, what we refer

to as a uniform ftp-reduction is the most standard and commonly used notion of

reduction [27].

An LBL-reduction is a special kind of fpt-reduction such that for all k ∈ N,

f(k) = k. This means that the reduction exactly preserves the parameter1. Further,

we say that the instance blow-up of an LBL-reduction is O(nd) if for every k, an

instance x of size n is reduced to an instance rk(x) of size at most O(nd) where d is

independent of k. All of the LBL-reductions that we encounter in this work can be

improved to uniform LBL-reductions while many of them can be further improved

to uniform logspace LBL-reductions.

We say that (k-A) and (k-B) are LBL-equivalent if (k-A) is LBL-reducible

to (k-B) and (k-B) is LBL-reducible to (k-A). Notice that the concept of LBL-

reduction forms a non-strict partial ordering on parameterized problems and the

concept of LBL-equivalence forms an equivalence relation.

To simplify how one shows that an infinite family (k-A) is LBL-reducible to

(DT
nk

)k∈N, we have the following proposition.

Proposition 2.1. Let an infinite family (k-A) be given. If there exists c such that

for every k, k-A ∈ DTIME(nck), then (k-A) is LBL-reducible to (DT
nk

)k∈N.

Sketch of proof. Let an infinite family (k-A) be given. Suppose that there

exists c such that for every k, k-A ∈ DTIME(nck). Let k be given. We describe

how to reduce k-A to DT
nk

.

1The notion of a parameter-preserving reduction from [40] is weaker only requiring that f(k) =
poly(k). Further, the notion of a linear fpt-reduction from [14] is also weaker only requiring that
f(k) = O(k) and the modified version of linear fpt-reduction from [15] has a weaker requirement
on the time complexity of the reduction.

10

2. PRELIMINARIES

Choose a deterministic Turing machine M that solves k-A in nck time. Therefore,

M is nck-time bounded. We can modify M to get a machine M′ that is nk-time

bounded where M′ accepts a string w if and only if there is some natural number

m such that w can be represented as p · x where p is a padding of length mc and x

is a string of length m that is accepted by M.

Now, let a string x of length m be given. The reduction takes x and maps to

a pair consisting of a machine encoding M ′ and a string p · x where p is a padding

of length mc. We have that x ∈ k-A if and only if the pair is in DT
nk

. Since M′ is

fixed, this is a O(nc)-time bounded reduction where c does not depend on k.

The preceding proposition is for the complexity class P and acceptance problem

(DT
nk

). Similar results apply for all complexity classes and associated acceptance

problems from subsection 2.2.3.

2.3.2 Parameterized Complexity Classes

Our primary focus is to relate the parameterized complexity of intersection non-

emptiness problems to acceptance problems. To provide some perspective on where

these problems fit within parameterzed complexity theory, we offer a brief overview

of relevant complexity classes and refer the reader to [24, 27] for further details.

Consider a parameterized problem (k-A). We say that (k-A) is fixed parameter

tractable if there exists a family of algorithms (ak), a function g, and a constant c

such that for all k,

ak solves k-A in g(k) · nc time.

Further, we say that (k-A) is uniform fixed parameter tractable and write (k-A) ∈ FPT

if the family of algorithms is effectively computable. Next, we consider characteri-

zations of the first two levels of the W hierarchy. A parameterized problem (k-A)

is said to be W [1]-complete if it is uniform fpt-equivalent to the k-clique problem.

Similarly, a parameterized problem (k-A) is said to be W [2]-complete if it is uniform

fpt-equivalent to the k-dominating set problem.

11

2. PRELIMINARIES

The acceptance problems from subsection 2.2.3 under uniform fpt-reductions1

naturally define some additional parameterized complexity classes. In particular,

we have the following relationships between acceptance problems and parameterized

complexity classes2.

(DS
k log) : XL-complete

(SSk log) : XSL-complete

(NS
k log) : XNL-complete

(ASk log) : XAL-complete

(AuxSk log) : XAuxL-complete

(DT
nk) : XP-complete

(AltAuxS
2nk

) : XAltAuxL-complete

(DT

2nk
) : XEXP-complete

Some of these parameterized problems are known to be LBL-equivalent. In

particular, from [46], we have that L = SL. A careful analysis leads us to the

following theorem.

Theorem 2.2. (DS
k log) and (SSk log) are LBL-equivalent.

From [18, 11], we have that AL = AuxL = P. A careful analysis leads us to

the following theorem.

Theorem 2.3. (ASk log), (AuxSk log), and (DT
nk

) are LBL-equivalent.

From [43], we have that AltAuxL = EXP. A careful analysis leads us to the

following theorem.

1For parameterized complexity classes XL, XSL, and XL, we restrict our attention to uniform
logspace fpt-reductions.

2The closure of the acceptance problems on the left-hand side under fpt-reductions naturally
characterizes their associated parameterized complexity classes.

12

2. PRELIMINARIES

Theorem 2.4. (AltAuxSk log) and (DT

2nk
) are LBL-equivalent.

2.4 Intersection Non-Emptiness

2.4.1 General Formulation

Let A denote a class of automata. The intersection non-emptiness problem for

A, denoted by IEA, consists of all finite lists of automata in A whose underlying

languages have a non-empty intersection.

Formally, the input for IEA is an encoding of a finite list of automata. For each

encoding, n will denote the length of the encoding and k will denote the number of

automata in the list. By fixing the number of automata to k, one obtains intersection

non-emptiness for k automata which we denote by k-IEA.

2.4.2 Naming Conventions and Problems

We investigate the complexity of intersection non-emptiness problems for various

classes of automata. To provide a general naming convention, we informally use

subscripts to denote classes of automata.

Consider the following intersection non-emptiness problems and their corre-

sponding classes of automata. We have the following problems for deterministic

finite automata.

IED : deterministic finite automata

IEAC : acyclic deterministic finite automata

IETD : tree shaped deterministic finite automata

13

2. PRELIMINARIES

We have the following problems for non-deterministic finite automata.

IEN : non-deterministic finite automata

IES : symmetric finite automata

IETN : tree shaped non-deterministic finite automata

We have the following problem for non-string based automata.

IET : deterministic top-down tree automata

We have the following problems for mixed classes of automata.

IE1PT+T : one pushdown tree automaton and tree automata

IE1P+D : one pushdown automaton and deterministic finite automata

IE1AC+TD : one acyclic deterministic finite automaton and tree shaped

deterministic finite automata

14

3

Results for Space Complexity

3.1 Non-Deterministic Logspace

The following subsection is based on the author’s ICALP 2014 paper [68].

3.1.1 Deterministic Finite Automata

Using the product construction, we can solve the intersection non-emptiness prob-

lem for k DFA’s in O(k log(n)) space.

Proposition 3.1. There exists c such that for every k, k-IED ∈ NSPACEb(ck log(n)).

Sketch of proof. We can solve k-IED by checking reachability in a product

machine because there exists a path from an initial product state to a final product

state if and only if there is a non-empty intersection. A state of the product machine

can be stored as a string of k log(n) bits. Given the initial product state, we can

non-deterministically guess which alphabet character comes next and transition to

a new product state. We continue guessing until we’ve constructed a path from the

initial product state to a final product state. Therefore, k-IED is solvable using at

most ck log(n) bits for some constant c.

By combining the preceding proposition and the technique of Proposition 2.1,

we get the following corollary.

Corollary 3.2. (k-IED) is LBL-reducible to (NS
k log).

15

3. RESULTS FOR SPACE COMPLEXITY

We re-examine a construction from Karakostas, Lipton, and Viglas [36] to di-

rectly show that the acceptance problem for k log(n)-space bounded non-deterministic

binary Turing machines is reducible to the intersection non-emptiness problem for

k DFA’s (see also [39, 37]).

Theorem 3.3. (NS
k log) is LBL-reducible to (k-IED).

Proof. We describe a parameterized reduction from NS
k log to k-IED. Then, we

discuss encoding details to justify it is a log-space parameterized reduction. Let

a k log(n) space bounded non-deterministic Turing machine M of size nM and an

input string s of length ns be given. Together, an encoding of M and s represent

an arbitrary input for NS
k log. Let n denote the total size of M and s combined i.e.

n := nM + ns.

Our first task is to construct k DFA’s, denoted by {Di}i∈[k], each of size at most

p(n) for some fixed polynomial p such that M accepts s if and only if
⋂
i∈[k] L(Di)

is non-empty. The DFA’s will read in a string that represents a computation of M

on s and verify that the computation is valid and accepting. The work tape of M

will be split into k sections each consisting of log(ns) sequential bits of memory.

The ith DFA, Di, will keep track of the ith section and verify that it is managed

correctly. In addition, all of the DFA’s will keep track of the input and work tape

head positions. The following two concepts are essential to our construction.

A section i configuration of M is a tuple of the form

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form

(state, input position, work position, write bit).

The states of Di are identified with section i configurations. Each Di has a single

initial state. We identify this initial state with the section i configuration of M that

represents the initial input and work positions, a blank ith section of the work tape,

and the initial state of M. We identify final states of Di with section i configurations

16

3. RESULTS FOR SPACE COMPLEXITY

of M that represent an accepting state of M. The alphabet characters are identified

with forgetful configurations. Intuitively, the Di’s read in forgetful configurations

that represent how the current bit cell should be manipulated and where to move

the tape heads next.

The transitions for the DFA Di are defined as follows. Let a forgetful configu-

ration a and section i configurations r1 and r2 be given. It’s possible that either

the work tape position of r1 is in the ith section, or the work tape position is in

another section. In the first case, there is a transition from state r1 with alphabet

character a to state r2 if the following are satisfied.

• Going from r1 to r2 represents a valid transition of M on input s.

• The ith section appropriately changes according to the write bit of a.

• We have that a and r2 agree on state, input position, and work position.

In the second case, there is a transition from state r1 with alphabet character a to

state r2 if the following are satisfied.

• We have r1 and r2 agree on the ith section of the work tape.

• We have a and r2 agree on state, input position, and work position.

We assert without proof that for every string x, x represents a valid accepting

computation of M on s if and only if x ∈
⋂
i∈[k] L(Di). Therefore, M accepts s if

and only if
⋂
i∈[k] L(Di) is non-empty.

We show that the Di’s have size at most p(n) for some fixed polynomial p. Each

Di consists of a start state, a list of final states, and a list of transitions where

each transition consists of two states and an alphabet character. Each state is

represented by a section i configuration and each alphabet character is represented

by a forgetful configuration. Therefore, in total there are nM · ns · k log(ns) · 2log(ns)

section i configurations and nM ·ns · k log(ns) forgetful configurations. Hence, there

exists a fixed two variable polynomial q such that each Di has size at most q(n, k).

Since k is fixed, one can blow up the degree of q to get a polynomial p such that p

doesn’t depend on k and each Di has size at most p(n).

17

3. RESULTS FOR SPACE COMPLEXITY

It should be clear from the preceding that there is a fixed polynomial t(n) such

that for every k, NS
k log is t(n)-time reducible to k-IED. However, we want to show

that there is a constant c such that for every k, NS
k log is c log(n)-space reducible to

k-IED. We accomplish this by describing how to print the string encoding of the

Di’s to an auxiliary write only output tape using at most c log(n) space for some

constant c.

We will describe how to print the transitions for each Di and leave the remaining

encoding details to the reader. We use a bit string i to represent the current DFA

and two bit strings j1 and j2 to represent section i configurations. We iterate

through every combination of i, j1, and j2. If Di has a transition from j1 to j2,

then we print (i, j1, a, j2) where a is the forgetful configuration such that j2 extends

a. We assert that checking whether to print (i, j1, a, j2) requires no more than

d log(k) + d log(n) bits for some constant d. Therefore, in printing the encoding of

the Di’s, we use no more than c log(k) + c log(n) bits for some constant c. For each

k, when n is sufficiently large, the log(k) term goes away. It follows that for every

k, NS
k log is c log(n)-space reducible to k-IED.

Corollary 3.4. (NS
k log) is LBL-equivalent to (k-IED).

Corollary 3.5. (k-IED) is XNL-complete.

Corollary 3.6. (NS
k log) is LBL-equivalent to (k-IEN).

Sketch of proof. Since DFA’s are special cases of NFA’s, we have that (k-IED)

is trivially LBL-reducible to (k-IEN). Also, we can apply the same approach from

Proposition 3.1 to get a constant c such that for every k, k-IEN ∈ NSPACEb(ck log(n)).

Hence, (k-IEN) is LBL-reducible to (NS
k log).

Further, since we have that (k-IED) and (NS
k log) are LBL-equivalent from Corol-

lary 3.4, it follows that (NS
k log), (k-IED), and (k-IEN) are all LBL-equivalent.

3.1.2 Multi-Pass Automata

The following subsection is based on private communication between the author and

Manuel Blum [70].

18

3. RESULTS FOR SPACE COMPLEXITY

A k-pass automaton is a finite automaton that reads over the input string from

left to right k times. At the end of each read, the automaton reads a special end

character and then moves the tape head to the start of the input continuing the

computation from the state where it left off from.

We consider the non-emptiness problem for k-pass deterministic finite automata.

We denote this problem by k-PASS. There is a natural reduction from k-IED to k-

PASS. We simply need to build a k-pass automaton such that each DFA is evaluated

for one of the k passes.1

Proposition 3.7. (k-IED) is LBL-reducible to (k-PASS).

Theorem 3.8. (k-PASS) is LBL-reducible to (k-IED).

Proof. Let a k-pass automaton A be given. Let |A| denote the number of states

in A. We construct a finite list of finite automata {Di}i∈[k] so that for each i ∈ [k],

|Di| = O(|A|2).
Let i ∈ [k] be given. The finite automaton Di has roughly |A|2 states. Aside

from an initial segment of states, all of the states can be represented by a pair of

states of A. That is, each state of Di can be represented by a pair (s, t) where s is

intended to represent the last state in the ith pass of A on an input string and t is

intended to represent the current state in the ith pass of A on an input string. A

state is final if s = t. However, in Dk, a state is only final if s = t and s is a final

state of A.

Essentially, the finite automata will first read in a bit string that encodes a list

{si}i∈[k] of k states from A. For each i ∈ [k], the state si−1 represents the first state

of the ith pass of A on an input2 and si represents the last state reached by A of

the ith pass of A on an input string. Next, the automata will read in the supposed

input for A simulating what A would do. That is, for each i ∈ [k], Di simulates the

ith pass of A on the supposed input verifying that the guessed last state si actually

is the last state in the ith pass.

1Similar to the concatenation construction for building a DFA for the concatenation of two
regular languages, we can connect the DFA state diagrams so that the final states of one DFA
transition to the start state of the next DFA and so on.

2Except when i = 1 in which case the first state of the first pass is the start state of A.

19

3. RESULTS FOR SPACE COMPLEXITY

We assert that there exists a string accepted by Di for all i ∈ [k] if and only

if there exists a string accepted by A. To see this, one observes that any string

accepted by each Di corresponds with an evaluation of A on k-passes of an input

string where the first and last states of each pass match up creating an accepting

computation of A. Also, one observes that any accepting path through A corre-

sponds with k-passes with associated first and last states where for each i ∈ [k], the

ith pass with corresponding states is accepted by the ith finite automaton.

Corollary 3.9. (NS
k log) is LBL-equivalent to (k-PASS).

The non-emptiness problem for multi-pass automata is similar to the non-

emptiness problem for two-way automata. The non-emptiness problem for two-way

automata is a known PSPACE-complete problem [33, 29]. We assert without proof

that NS
k log is LBL-equivlaent to non-emptiness for k-turn two-way automata.

3.2 Deterministic Logspace

The following subsection is based on a collaboration between the author and Joseph

Swernofsky to explore non-standard classes of finite automata.

3.2.1 Symmetric Automata

A symmetric finite automata (or SFA) is an NFA satisfying the following. Each

alphabet character c has a corresponding alphabet character cr such that if there is

a transition from state p to q with alphabet character c, then there is a transition

from state q to p with alphabet character cr. We denote the intersection non-

emptiness problem for SFA’s by IES. Further, we denote the intersection non-

emptiness problem for k SFA’s by k-IES.

The concept of a symmetric Turing machine was introduced in [46]. We consider

the complexity class SL consisting of languages accepted by symmetric logspace

bounded Turing machines. By the equivalences from [57], we have that L = SL.

Proposition 3.10. There exists c such that for every k, k-IES ∈ DSPACEb(ck log(n)).

20

3. RESULTS FOR SPACE COMPLEXITY

Sketch of proof. We solve k-IES by checking reachability in a product machine.

We can do this because there exists a path from an initial product state to a final

product state if and only if there is a non-empty intersection.

Notice that symmetric automata preserved their symmetric property under the

product construction. That is, if there is a transition from a product state s1 to

a product state s2 on an alphabet character a. There there is a reverse transition

from s2 to s1 on the reverse alphabet character ar because each coordinate of the

product state is reversed on ar by the defining property of symmetric automata.

Now, it was shown in [57] that we can solve reachability in an undirected graph in

deterministic logarithmic space. In particular, it follows that there exists a constant

c such that given an undirected graph with n vertices and two designated vertices v1

and v2, we can determine if there exists a path from v1 to v2 using at most c log(n)

bits of memory.

Since the product machine has at most nk product states, we just need to solve

reachability in an reversible (undirected) graph with at most nk vertices. We can

do this using roughly ck log(n) bits of memory. Therefore, k-IED is solvable using

at most ck log(n) bits for some constant c.

Corollary 3.11. (k-IES) is LBL-reducible to (DS
k log).

Theorem 3.12. (SSk log) is LBL-reducible to (k-IES).

Proof. A symmetric Turing machine is a non-deterministic machine such that

every transition has a corresponding reverse transition. We consider symmetric

Turing machines with a read only input tape and a read/write binary work tape.

There are three kinds of transitions based on the direction that the work tape head

moves. There is a stationary transition that reads the current work tape cell and

writes to it. There is a right moving transition that reads the current work tape cell

and the cell to the right and writes to these two cells. Also, there is a left moving

transition that reads the current work tape cell and the cell to the left and writes

to these two cells. Similarly, the input head is able to peek one cell to the left or

right based on the direction that it moves.

21

3. RESULTS FOR SPACE COMPLEXITY

We describe a parameterized reduction from SSk log to k-IES. We leave encoding

details to the reader to justify that it is a log-space parameterized reduction. Let a

k log(n) space bounded symmetric Turing machine M of size nM and an input string

s of length ns be given. Together, an encoding of M and s represent an arbitrary

input for SSk log. Let n denote the total size of M and s combined i.e. n := nM + ns.

Our first task is to construct k SFA’s, denoted by {Si}i∈[k], each of size at most

p(n) for some fixed polynomial p such that M accepts s if and only if
⋂
i∈[k] L(Si)

is non-empty. The SFA’s will read in a string that represents a computation of M

on s and verify that the computation is valid and accepting. The work tape of M

will be split into k sections each consisting of log(ns) sequential bits of memory.

The ith SFA, Si, will keep track of the ith section and verify that it is managed

correctly. In addition, all of the SFA’s will keep track of the input and work tape

head positions. The following two concepts are essential to our construction.

A section i configuration of M is a tuple of the form

(state, input position, work position, ith section of work tape).

An informative configuration of M is a tuple of the form

(source state, target state, input direction, work direction, read bits, write bits).

The states of Si are identified with section i configurations. Each Si has a

single initial state. We identify this initial state with the section i configuration

of M that represents the initial input and work positions, a blank ith section of

the work tape, and the initial state of M. We identify final states of Si with

section i configurations of M that represent an accepting state of M. The alphabet

characters are identified with informative configurations. Intuitively, the Si’s read in

informative configurations that represent how the machine M could be manipulated

in one step of the computation.

The transitions for the SFA Si are defined as follows. Let an informative con-

figuration a and section i configurations r1 and r2 be given. There is a transition

from state r1 with alphabet character a to state r2 if the following are satisfied.

22

3. RESULTS FOR SPACE COMPLEXITY

• There is a transition for M on input s corresponding to the informative con-

figuration a.

• The tape positions move from r1 to r2 according to the tape directions of a.

• The source and target states of a match r1 and r2, respectively.

• When appropriate, the read and write bits of a match r1 and r2, respectively.

• The remaining bits from r1 and r2’s section of the work tape match.

It remains to justify that these automata are SFA’s. For each informative con-

figuration, there is a corresponding reverse informative configuration. This reverse

configuration is obtained by flipping the input and work directions, swapping the

source and target states, and swapping the read bits and write bits. Since the ma-

chine M is symmetric, every transition has a corresponding reverse transition. By

the construction of the finite automata, every transition has a corresponding reverse

transition with the reverse alphabet character identified by the reverse informative

configuration.

We assert without proof that for every string x, x represents a valid accepting

computation of M on s if and only if x ∈
⋂
i∈[k] L(Si). Therefore, M accepts s if

and only if
⋂
i∈[k] L(Si) is non-empty.

We show that the Si’s have size at most p(n) for some fixed polynomial p. Each

Si consists of a start state, a list of final states, and a list of transitions where

each transition consists of two states and an alphabet character. Each state is

represented by a section i configuration and each alphabet character is represented

by a informative configuration. Therefore, in total there are nM ·ns ·k log(ns)·2log(ns)

section i configurations and O(n2
M) informative configurations. Hence, there exists

a fixed two variable polynomial q such that each Si has size at most q(n, k). Since

k is fixed, one can blow up the degree of q to get a polynomial p such that p doesn’t

depend on k and each Si has size at most p(n).

Corollary 3.13. (DS
k log) is LBL-equivalent to (k-IES).

23

3. RESULTS FOR SPACE COMPLEXITY

Proof. From Theorem 2.2, we know that (SSk log) and (DS
k log) are LBL-equivalent.

By combining with Corollary 3.11 and Theorem 3.12, we obtain the desired result.

Corollary 3.14. (k-IES) is XL-complete.

24

4

Results for Time Complexity

The following section is based on the author’s ICALP 2015 paper with Joseph Swer-

nofsky [59].

4.1 Polynomial Time

4.1.1 Pushdown Automata

Using the product construction, we can solve the intersection non-emptiness prob-

lem for one pushdown automaton and k DFA’s in nO(k) time.

Proposition 4.1. There exists c such that for every k, k-IE1P+D ∈ DTIME(nck).

Proof. Non-emptiness for a single PDA is known to be solvable in polynomial

time. Hence, we may choose c such that non-emptiness for PDA’s is in DTIME(nc).

Let k be given. Let an input consisting of one PDA and k DFA’s be given. Let

m denote the number of states from the largest automaton. Let n denote the total

length of the input’s string encoding. The product of the PDA and k DFA’s is a

PDA with at most mk+1 states and the product can be encoded by a string of length

at most nk+1. Now, we use the algorithm that decides non-emptiness for PDA’s to

solve non-emptiness for the product automaton in O(nc(k+1)) time.

Since k is arbitrary, we have for all k, k-IE1P+D ∈ DTIME(nc(k+1)). We can

choose a larger constant c′ so that for all k, k-IE1P+D ∈ DTIME(nc
′k).

Corollary 4.2. (k-IE1P+D) is LBL-reducible to (DT
nk

).

25

4. RESULTS FOR TIME COMPLEXITY

In the following theorem, we reduce acceptance for k log(n)-space bounded aux-

iliary pushdown automata to intersection non-emptiness for one PDA and k DFA’s.

Our presentation is in the same format as that from subsection 3.1.1.

Theorem 4.3. (AuxSk log) is LBL-reducible to (k-IE1P+D).

Proof. An auxiliary pushdown automaton has a stack, a two-way read-only

input tape, and a single read/write work tape. We will restrict the read/write work

tape to be binary and bound the amount of cells that the automaton can use in

terms of the input length. In addition, we will only consider auxiliary pushdown

automata where the stack alphabet is binary. Such restricted auxiliary PDA’s are

sufficient for carrying out the simulation in [18].

Let k be given. We will describe a reduction from AuxSk log to k-IE1P+D. Let a

k log(n)-space bounded auxiliary pushdown automaton M of size nM and an input

string x of length nx be given. Together, an encoding of M and x represent an

arbitrary input for AuxSk log. Let n denote the total size of M and x combined i.e.

n := nM + nx.

Our task is to construct one PDA and k DFA’s, denoted by PD and {Di}i∈[k],
each of size at most O(nc) for some fixed constant c such that M accepts x if and

only if L(PD)∩
⋂
i∈[k] L(Di) is non-empty. The automata will read in a string that

represents a computation of M on x and verify that the computation is valid and

accepting. The PDA PD will verify that the stack is managed correctly while the

DFA’s will verify that the work tape is managed correctly. In particular, the work

tape of M will be split into k sections each consisting of log(nx) sequential bits of

memory. The ith DFA, Di, will keep track of the ith section and verify that it is

managed correctly. In addition, all of the DFA’s will keep track of the tape head

positions.

The following two concepts are essential to our construction.

A section i configuration of M is a tuple of the form:

(state, input position, work position, ith section of work tape).

26

4. RESULTS FOR TIME COMPLEXITY

A forgetful configuration of M is a tuple of the form:

(state, input position, work position, write bit, stack action, top bit).

The alphabet symbols are identified with forgetful configurations. The PDA PD

only has two states. When it reads a forgetful configuration a, if a represents the

top of the stack correctly, then PD loops in the initial/accepting state and pushes

or pops based on the stack instruction that a represents. Otherwise, PD goes to

the dead/rejecting state.

The states for the Di’s are identified with section i configurations. Each Di has

a single initial state. We identify this initial state with the section i configuration

of M that represents the initial input and work positions, a blank ith section of the

work tape, and the initial state of M. The final states of Di represent accepting

configurations of M.

Informally, the transitions are defined as follows. For each Di, there is a transi-

tion from state r1 to state r2 with symbol a if a validly represents how the state and

partial tapes for r1 and r2 could be manipulated in one step for the computation

of M on input x. It’s important to notice that in order to determine if there is a

transition, the stack action and top bit of the stack must be taken into account.

We assert without proof that for every string y, y represents a valid accepting

computation of M on x if and only if y ∈ L(PD) ∩
⋂
i∈[k] L(Di). Therefore, M

accepts x if and only if L(PD) ∩
⋂
i∈[k] L(Di) is non-empty. By bounding the total

number of section i configurations, one can show there exists a fixed two variable

polynomial q such that each Di has at most q(n, k) states. Therefore, there is a

constant d that does not depend on k such that each Di has size at most O(nd)

where k is treated as a constant. Further, we can compute each Di’s transition

table by looping through every combination of a pair of states and an alphabet

symbol and marking the valid combinations. The number of possible combinations

is a fixed polynomial blow-up from nd. Therefore, we can compute the transition

tables in O(nc) time for some slightly larger constant c that does not depend on k.

27

4. RESULTS FOR TIME COMPLEXITY

Since k was arbitrary, we have that for every k, there is an O(nc)-time reduction

from AuxSk log to k-IE1P+D.

In the preceding reduction, it was surprising that the PDA had a fixed number

of states. Even more surprisingly, one could convert the automata constructed in

the reduction to automata with a binary input alphabet. In doing so, the PDA can

be made fixed. In other words, there is a fixed deterministic pushdown automaton

for which the intersection non-emptiness problem is hard.

By applying techniques from Cook [18] we obtain the following corollary.

Corollary 4.4. (DT
nk

) is LBL-equivalent to (k-IE1P+D).

Proof. From Theorem 2.3, we know that (AuxSk log) and (DT
nk

) are LBL-equivalent.

By combining with Corollary 4.2 and Theorem 4.3, we obtain the desired result.

Corollary 4.5. (k-IE1P+D) is XP-complete.

4.1.2 Multi-Stack Pushdown Automata

A two-stack pushdown automaton can simulate a Turing machine. Therefore, the

non-emptiness problem for such machines is undecidable. However, we can restrict

how and when the machines can access their stacks to obtain classes of machines

whose non-emptiness problems are decidable [49]. In particular, we discuss the k-

phase switches restriction. This restriction forces a machine to designate a stack

for popping. In other words, a restricted machine can push to any stack, but only

pop from the designated stack. The k refers to how many times the machine can

switch which stack is designated. We refer to a machine with such a restriction as a

multi-stack pushdown automaton with k-phase switches. For background on such

machines, we refer the reader to [62]. We also investigate what we refer to as the

dual class of machines. These machines can pop from any stack, but can only push

to the designated stack.

We denote the non-emptiness problem for multi-stack pushdown automata with

k-phase switches by k-MPDA. Similarly, we denote the non-emptiness problem for

the dual machines by k-co-MPDA.

28

4. RESULTS FOR TIME COMPLEXITY

Proposition 4.6. There exists c such that for every k, k-MPDA and k-co-MPDA

∈ DTIME(nc2
k
).

Sketch of proof. In [49], it was shown that k-MPDA and k-co-MPDA ∈
DTIME(nO(2k)) by a reduction to non-emptiness for graph automata with bounded

tree width and further to non-emptiness for tree automata.

Corollary 4.7. (k-MPDA) and (k-co-MPDA) are LBL-reducible to (DT

n2k
).

Reductions have been introduced to show the hardness of related non-emptiness

problems. In particular, a reduction was introduced to show that the non-emptiness

problem for a related class of infinite automata has a double exponential time lower

bound [42]. In addition, a reduction was introduced to show that the non-emptiness

problem for ordered multi-stack pushdown automata has a double exponential time

lower bound [3].

In the following theorem, we reduce intersection non-emptiness for one PDA

and 2k DFA’s to non-emptiness for multi-stack pushdown automata with k-phase

switches.

Theorem 4.8. (2k-IE1P+D) is LBL-reducible to (k-MPDA).

Sketch of proof. Let an input for 2k-IE1P+D consisting of a PDA and 2k DFA’s

be given. We will describe how to construct a multi-stack pushdown automaton

M with k-phase switches whose language is non-empty if and only if the PDA and

DFA’s languages have a non-empty intersection.

The machine M will have k stacks. It will read its input and copy it onto all

of the stacks besides the first stack. While it is reading the input, the first stack

will be used to simulate the PDA on the input. Then, it will repeat the following

procedure until each of the stacks have been designated once.

The procedure consists of popping from the designated stack and pushing what

is being popped onto all of the other stacks. While it is popping, it is also simulating

one DFA per copy of the input string or simulating one DFA in reverse per copy

of the reversal of the input string. This will eventually create exponentially many

29

4. RESULTS FOR TIME COMPLEXITY

copies of the input string followed by the reversal of the input string and lead to

simulating each DFA or reversal on one of the copies.

If the PDA and all of the DFA’s accept, then M will accept. Otherwise, M

will reject. In total, we are able to simulate one PDA and O(2k) DFA’s using only

k-phase switches. Also, the size of M will be approximately the sum of the sizes of

the PDA and DFA’s.

A related reduction can be given for the dual machines.

Theorem 4.9. (2k-IE1P+D) is LBL-reducible to (k-co-MPDA).

Sketch of proof. Let an input for 2k-IE1P+D consisting of a PDA and 2k DFA’s

be given. We will describe how to construct a dual machine with k-co-phase switches

that accepts some input if and only if the PDA and DFA’s languages have a non-

empty intersection.

The MPDA will have k stacks. It will read an input consisting of 2k separated

strings and repeat the following procedure. As it is reading the input, it will copy

the strings onto the designated stack. In addition, while reading, it will trade-off

between simulating one DFA per string and simulating one DFA in reverse per

string. Eventually, the MPDA will non-deterministically guess that it reached the

midpoint i.e. the point when the designated stack’s height is equal to the length of

what still needs to be read on the input tape. When this happens, it will designate

a new stack. Now, as it continues reading the input, it will pop the previously

designated stacks and make sure that the strings on the input tape match the

strings on these stacks while still repeating this procedure from the beginning on

the newly designated stack.

Essentially, this procedure allows the MPDA to read in a sequence of exponen-

tially many separated strings and use the stacks to verify that the strings are all

equivalent modulo reversal. All the while, the MPDA is simulating one DFA per

string or simulating one DFA in reverse per reversal of the string.

Finally, when the procedure is finished and the end of the input is reached, all

the stacks are empty besides one stack with exactly one copy of the string. We can

designate a new stack to simulate the PDA on the one remaining copy of the string.

30

4. RESULTS FOR TIME COMPLEXITY

It is alright for us to designate a new stack to simulate the PDA because the end

of the input was reached and we already verified that all the strings on the input

tape are the same modulo reversal.

If the PDA and all of the DFA’s accept, then the MPDA will accept. Otherwise,

it will reject. In total, we are able to simulate one PDA and O(2k) DFA’s using

only k-co-phase switches. Also, the size of the MPDA will be approximately the

sum of the sizes of the PDA and DFA’s.

Corollary 4.10. (k-MPDA), (k-co-MPDA), and (DT

n2k
) are LBL-equivalent.

Proof. From Corollary 4.4, we know that (2k-IE1P+D) and (DT

n2k
) are LBL-

equivalent. By combining with Corollary 4.7, Theorem 4.8, and Theorem 4.9, we

obtain the desired result.

Corollary 4.11. Both (k-MPDA) and (k-co-MPDA) are XP-complete.

4.1.3 Tree Automata

It is known that the general intersection non-emptiness problem for deterministic

top-down tree automata is EXP-complete [17]. For background on decision prob-

lems for tree automata, we refer the reader to [17] and [50].

Proposition 4.12. There exists c such that for every k, k-IET ∈ ASPACEb(ck log(n)).

Sketch of proof. We can solve k-IET by using alternation to check if there is a

tree accepted by the product tree automaton. A state of the product machine can be

stored as a string of k log(n) bits. Given such a state, we can non-deterministically

guess which alphabet character comes next. Based on this character, we transition

to a set of possible product states. Then, we apply a universal quantifier to continue

the tree for each product state in this set independently. We repeat this process

of alternation. Once an accepting product state is reached, we accept. Therefore,

k-IET is solvable using at most ck log(n) bits for some constant c.

Corollary 4.13. (k-IET) is LBL-reducible to (ASk log).

31

4. RESULTS FOR TIME COMPLEXITY

In the following theorem, we reduce acceptance for k log(n)-space bounded alter-

nating Turing machines to intersection non-emptiness for k tree automata. Related

reductions can be found in [65] and briefly described in [17]. Our presentation is in

the same format as that from subsection 3.1.1.

Theorem 4.14. (ASk log) is LBL-reducible to (k-IET).

Proof. An alternating Turing machine has existential states and universal states.

Therefore, there are existential configurations and universal configurations. An ex-

istential configuration c leads to an accepting configuration if and only if there exists

a valid transition out of c that leads to an accepting configuration. A universal con-

figuration c leads to an accepting configuration if and only if every valid transition

out of c leads to an accepting configuration. We will only consider alternating ma-

chines such that no universal configuration can have more than two valid outgoing

transitions. We assert without proof that any alternating machine can be unraveled

with intermediate universal states to satisfy this property in such a way that there

is no more than a polynomial blow-up in the number of states.

Let k be given. We will describe a reduction from ASk log to k-IET. Let a k log(n)-

space bounded alternating Turing machine M of size nM and an input string x of

length nx be given. Together, an encoding of M and x represent an arbitrary input

for ASk log. Let n denote the total size of M and x combined i.e. n := nM + nx.

Our task is to construct k top-down deterministic tree automata, denoted by

{Ti}i∈[k], each of size at most O(nc) for some fixed constant c such that M accepts

x if and only if
⋂
i∈[k] L(Ti) is non-empty. The tree automata will read in a labeled

tree that represents a computation of M on x and verify that the computation is

valid and accepting. The work tape of M will be split into k sections each consisting

of log(nx) sequential bits of memory. The ith tree automaton, Ti, will keep track of

the ith section and verify that it is managed correctly. In addition, all of the tree

automata will keep track of the tape head positions.

The following two concepts are essential to our construction.

32

4. RESULTS FOR TIME COMPLEXITY

A section i configuration of M is a tuple of the form:

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form:

(state, input position, work position, write bit).

The states of Ti are identified with section i configurations. Each Ti has a single

initial state. We identify this initial state with the section i configuration of M

that represents the initial input and work positions, a blank ith section of the work

tape, and the initial state of M. The alphabet consists of symbols of arity 0, 1,

and 2 such that each arity 0 symbol represents an accepting forgetful configuration,

each arity 1 symbol represents an arbitrary forgetful configuration, and each arity 2

symbol represents a pair of forgetful configurations. We won’t need any symbols of

arity larger than 2 because each universal configuration has at most two outgoing

transitions.

We say that a section i configuration r extends a forgetful configuration a if r

agrees with a on state, input position, and work position. We say that a section i

configuration r1 transitions to a section i configuration r2 on input x if either the

work position for r1 is in the ith section and r2 correctly represents how the tape

positions and the ith section could change in one step of the computation on x or

r1 is not in the ith section and r1 and r2 agree on the ith section of the work tape.

For each Ti, we have the following transitions. Each arity 0 symbol a accepts

on a state r if and only if r extends a and a represents an accepting state of M.

Each arity 1 symbol a transitions from a state r1 to a state r2 if and only if (i) r1

transitions to r2 on input x (consistently with a’s write bit), (ii) r2 extends a, and

(iii) if r1 is a universal configuration and the work position of r1 is in the ith section,

then r1 can only transition to r2 on input x. Each arity 2 symbol (a1, a2) transitions

from a state r to a pair of distinct states (r1, r2) if and only if r transitions to r1

on input x, r transitions to r2 on input x, r1 extends a1, and r2 extends a2.

33

4. RESULTS FOR TIME COMPLEXITY

We assert without proof that for every labeled tree y, y represents a valid ac-

cepting computation of M on x if and only if y ∈
⋂
i∈[k] L(Ti). Therefore, M accepts

x if and only if
⋂
i∈[k] L(Ti) is non-empty. By bounding the total number of section

i configurations, one can show there exists a fixed two variable polynomial q such

that each Ti has at most q(n, k) states. Therefore, there is a constant d that does

not depend on k such that each Ti has size at most O(nd) where k is treated as a

constant. Further, we can compute each Ti’s transition table by looping through

every combination of a pair of states and an alphabet symbol and marking the valid

combinations. The number of possible combinations is a fixed polynomial blow-up

from nd. Therefore, we can compute the transition tables in O(nc) time for some

slightly larger constant c that does not depend on k.

Since k was arbitrary, we have that for every k, there is an O(nc)-time reduction

from ASk log to k-IET.

Theorem 4.15. (DT
nk

) is LBL-equivalent to (k-IET).

Proof. From Theorem 2.3, we know that (ASk log) and (DT
nk

) are LBL-equivalent.

By combining with Corollary 4.13 and Theorem 4.14, we obtain the desired result.

Theorem 4.16. (k-IET) is XP-complete.

4.2 Exponential Time

4.2.1 Pushdown Tree Automata

A pushdown tree automaton is essentially a tree automaton with auxiliary storage

in the form of a stack. This notion was introduced in [30]. In general, a pushdown

tree automaton has a special kind of stack that stores data in the form of a tree.

However, we focus on what are referred to as restricted pushdown tree automata.

Such an automaton has a stack in the usual sense. That is, the stack stores a string

and behaves according to the standard push and pop operations.

34

4. RESULTS FOR TIME COMPLEXITY

The emptiness problem for pushdown tree automata has been considered by

several authors. Following from [66, 41], there is a consensus that this problem

is EXP-complete [2]. Also, from [53, 60] we have that the emptiness problem for

context-free tree grammars is EXP-complete.

We consider the intersection non-emptiness problem for one pushdown tree au-

tomata and k tree automata. We denote this problem by k-IE1PT+T. Rather than

following the approaches from previous work on pushdown tree automata, we pro-

ceed by introducing a natural connection between pushdown tree automata and

alternating auxiliary pushdown automata.

Proposition 4.17. There exists c such that for every k,

k-IE1PT+T ∈ AltAuxSPACEb(ck log(n)).

Sketch of proof. We can solve k-IE1PT+T by using alternation to check if there

is a tree accepted by the product pushdown tree automaton. A state of the product

machine can be stored as a string of k log(n) bits. Given such a state, we can

non-deterministically guess which alphabet character comes next. Based on this

character, the product automaton would transition to a set of possible product

states each with their own stack configuration. We apply a universal quantifier to

continue the tree for each product state with the corresponding stack configuration.

We repeat this process of alternation. Once an accepting product state is reached,

we accept. Therefore, k-IE1PT+T is solvable using at most ck log(n) bits for some

constant c.

Corollary 4.18. (k-IE1PT+T) is LBL-reducible to (AltAuxSk log).

Theorem 4.19. (AltAuxSk log) is LBL-reducible to (k-IE1PT+T).

Proof. An alternating auxiliary pushdown automaton is an alternating machine

with a stack, a two-way read-only input tape, and a single read/write work tape.

We will restrict the read/write work tape to be binary and bound the amount

of cells that the automaton can use in terms of the input length. In addition,

we will only consider alternating auxiliary pushdown automata where the stack

35

4. RESULTS FOR TIME COMPLEXITY

alphabet is binary and no universal configuration has more than two valid outgoing

transitions. Such restricted alternating auxiliary PDA’s are sufficient for carrying

out the simulation in [43].

Let k be given. We will describe a reduction from AltAuxSk log to k-IE1PT+T. Let

a k log(n)-space bounded alternating Turing machine M of size nM and an input

string x of length nx be given. Together, an encoding of M and x represent an

arbitrary input for AltAuxSk log. Let n denote the total size of M and x combined

i.e. n := nM + nx.

Our task is to construct one top-down deterministic pushdown tree automaton

and k top-down deterministic tree automata, denoted by PT and {Ti}i∈[k], each of

size at most O(nc) for some fixed constant c such that M accepts x if and only if

L(PT)∩
⋂
i∈[k] L(Ti) is non-empty. The tree automata will read in a labeled tree that

represents a computation of M on x and verify that the computation is valid and

accepting. The pushdown tree automaton PT will verify that the stack is managed

correctly down every branch of the computation while the tree automata will verify

that the work tape is managed correctly down every branch of the computation.

In particular, the work tape of M will be split into k sections each consisting of

log(nx) sequential bits of memory. The ith tree automaton, Ti, will keep track of

the ith section and verify that it is managed correctly. In addition, all of the tree

automata will keep track of the tape head positions.

The following two concepts are essential to our construction.

A section i configuration of M is a tuple of the form:

(state, input position, work position, ith section of work tape).

A forgetful configuration of M is a tuple of the form:

(state, input position, work position, write bit, stack action, top bit).

The alphabet consists of symbols of arity 0, 1, and 2 such that each arity 0 sym-

bol represents an accepting forgetful configuration, each arity 1 symbol represents

an arbitrary forgetful configuration, and each arity 2 symbol represents a pair of

36

4. RESULTS FOR TIME COMPLEXITY

forgetful configurations. We won’t need any symbols of arity larger than 2 because

each universal configuration has at most two outgoing transitions.

The pushdown tree automaton PT only has two states. When it reads an arity

0 symbol a, if a represents the top of the stack correctly, then PT accepts. When

it reads an arity 1 symbol a, if a represents the top of the stack correctly, then PT

loops in the initial/accepting state and pushes or pops based on the stack instruction

that a represents. Otherwise, PT goes to the dead/rejecting state. When it reads an

arity 2 symbol (a1, a2), if a1 and a2 represent the top of the stack correctly, then PT

branches to a configuration corresponding to a1 and a configuration corresponding

to a2 so that PT loops in the initial/accepting state and pushes or pops based on

the stack instruction that a1 or a2 represents, respectively. Otherwise, PT goes to

the dead/rejecting state for both branches.

The states of Ti are identified with section i configurations. Each Ti has a single

initial state. We identify this initial state with the section i configuration of M that

represents the initial input and work positions, a blank ith section of the work tape,

and the initial state of M.

We say that a section i configuration r extends a forgetful configuration a if r

agrees with a on state, input position, and work position. We say that a section i

configuration r1 transitions to a section i configuration r2 on input x with stack bit b

if either the work position for r1 is in the ith section and r2 correctly represents how

the tape positions and the ith section could change in one step of the computation

on x with top of stack b or r1 is not in the ith section and r1 and r2 agree on the

ith section of the work tape.

For each Ti, we have the following transitions. Each arity 0 symbol a accepts

on a state r if and only if r extends a and a represents an accepting state of M.

Each arity 1 symbol a transitions from a state r1 to a state r2 if and only if (i) r1

transitions to r2 on input x with a’s top bit (consistently with a’s write bit and

stack action), (ii) r2 extends a, and (iii) if r1 is a universal configuration and the

work position of r1 is in the ith section, then r1 can only transition to r2 on input x

with a’s top bit. Each arity 2 symbol (a1, a2) transitions from a state r to a pair of

37

4. RESULTS FOR TIME COMPLEXITY

distinct states (r1, r2) if and only if r transitions to r1 on input x with a1’s top bit,

r transitions to r2 on input x with a2’s top bit, r1 extends a1, and r2 extends a2.

We assert without proof that for every labeled tree y, y represents a valid ac-

cepting computation of M on x if and only if y ∈ L(PT) ∩
⋂
i∈[k] L(Ti). Therefore,

M accepts x if and only if L(PT)∩
⋂
i∈[k] L(Ti) is non-empty. By bounding the total

number of section i configurations, one can show there exists a fixed two variable

polynomial q such that each Ti has at most q(n, k) states. Therefore, there is a

constant d that does not depend on k such that each Ti has size at most O(nd)

where k is treated as a constant. Further, we can compute each Ti’s transition table

by looping through every combination of a pair of states and an alphabet symbol

and marking the valid combinations. The number of possible combinations is a

fixed polynomial blow-up from nd. Therefore, we can compute the transition tables

in O(nc) time for some slightly larger constant c that does not depend on k.

Since k was arbitrary, we have that for every k, there is an O(nc)-time reduction

from AltAuxSk log to k-IE1PT+T.

Corollary 4.20. (DT

2nk
) is LBL-equivalent to (k-IE1PT+T).

Proof. From Theorem 2.4, we know that (AltAuxSk log) and (DT

2nk
) are LBL-

equivalent. By combining with Corollary 4.18 and Theorem 4.19, we obtain the

desired result.

Corollary 4.21. (k-IE1PT+T) is XEXP-complete.

38

5

Results for Time-Space Complex-

ity

5.1 Deterministic Linear Time and Logspace

5.1.1 Acyclic Automata

An acyclic finite automaton1 is a finite automaton whose state diagram forms a

directed acyclic graph (ignoring the dead state). Since these automata contain no

directed cycles or loops, they can only accept finite languages. In particular, an

acyclic finite automaton with at most n states cannot accept any string of length

larger than n− 1.

We investigate the intersection non-emptiness problem for deterministic acyclic

finite automata. We denote this problem by IEAC. In Rampersad and Shallit

(2010), it was shown that IEAC is NP-complete [56]. We strengthen their result by

investigating the parameterized problem k-IEAC.

Consider the acceptance problem for non-deterministic n-time and k log(n) space

bounded Turing machines. We denote this problem by N
(T,S)
(n,k log).

Proposition 5.1. There exists c such that for every k, k-IEAC ∈ NTISPb(n, ck log(n)).

1A deterministic acyclic finite automaton over a binary input alphabet is similar to the concept
of a reduced ordered binary decision diagram [8] and the concept of an oblivious read-once binary
decision diagram [38].

39

5. RESULTS FOR TIME-SPACE COMPLEXITY

Sketch of proof. We can solve k-IEAC by checking reachability in a product

machine. A state of the product machine can be stored as a string of k log(n) bits.

Given such a state, we can non-deterministically guess which state comes next.

Since the automata can only accept strings of length at most n − 1, there exists

a path from an initial state to a final state if and only if there exists a path from

an initial state to a final state of length at most n − 1. Therefore, since the path

we are guessing has length at most n− 1, k-IEAC is solvable in O(n) time using at

most ck log(n) bits for some constant c.

Corollary 5.2. (k-IEAC) is LBL-reducible to (N
(T,S)
(n,k log)).

Theorem 5.3. (N
(T,S)
(n,k log)) is LBL-reducible to (k-IEAC).

Proof. Let an n-time and k log(n)-space bounded non-deterministic Turing ma-

chine M of size nM and an input string s of length ns be given. Together, an encoding

of M and s represent an arbitrary input for N
(T,S)
(n,k log). Let n denote the total size of

M and s combined i.e. n := nM + ns.

We previously investigated a reduction from NS
k log to k-IED. We can apply this

construction to get k DFA’s, denoted by {Di}i∈[k], each of size at most p(n) for

some fixed polynomial p such that M accepts s if and only if
⋂
i∈[k] L(Di) is non-

empty. However, the DFA’s that we constructed might not be acyclic. We provide

an additional step to this construction to make the DFA’s acyclic.

We construct k acyclic DFA’s, denoted by {D′i}i∈[k], each of size at most (n+ 1) · p(n)

such that M accepts s if and only if
⋂
i∈[k] L(D′i) is non-empty. For each i ∈ [k], the

states of D′i are represented by an ordered pair (s, j) where s is a state of Di and j

is a non-negative integer between 0 and n. The start state is (s0, 0) where s0 is the

start state of Di and the final states are of the form (sf , j) where sf is a final state

of Di. Further, for each j ∈ [n], there is a transition from state (s1, j − 1) to (s2, j)

on character c if there is a transition from s1 to s2 on character c in Di. Also, there

is a transition from (s, n) to the dead state on every input character c.

Since the construction essentially just takes each Di and limits the length of

accepted strings. We have that a string x ∈ L(D′i) if and only if x ∈ L(Di) and

40

5. RESULTS FOR TIME-SPACE COMPLEXITY

x has length at most n. Since the machine M is n-time bounded, we have that

M accepts s if and only if M accepts s in at most n steps. Hence, M accepts s if

and only if there exists a string of length at most n in
⋂
i∈[k] L(Di). Therefore, M

accepts s if and only if
⋂
i∈[k] L(D′i) is non-empty.

Corollary 5.4. (N
(T,S)
(n,k log)) is LBL-equivalent to (k-IEAC).

5.2 Alternating Linear Time and Logspace

5.2.1 Acyclic Tree Automata

An acyclic tree automaton is a top-down tree automaton that contains no cycle

branches. A cycle branch is a sequence of distinct states {si}i∈[m] such that (1) for

each i ∈ [m− 1], there exists a transition from si to a tuple of states that contains

si+1 and (2) there exists a transition from sm to a tuple of states that contains s1.

Since acyclic tree automata contain no cycle branches, they can only accept

finite tree languages. In particular, an acyclic tree automaton with at most n states

cannot accept any tree of height larger than n− 1.

We investigate the intersection non-emptiness problem for deterministic acyclic

tree automata. We denote this problem by IEACT. Further, we denote the intersec-

tion non-emptiness problem for k deterministic acyclic tree automata by k-IEACT.

Consider the acceptance problem for alternating n-time and k log(n) space bounded

Turing machines. We denote this problem by A
(T,S)
(n,k log).

Proposition 5.5. There exists c such that for every k, k-IEACT ∈ ATISPb(n, ck log(n)).

Sketch of proof. We can solve k-IEACT by using alternation to check if there is

a tree accepted by the product tree automaton of height at most n. A state of the

product machine can be stored as a string of k log(n) bits. Given such a state, we

can non-deterministically guess which tuple of states come next. Then, we apply a

universal quantifier to continue the tree for each state in the tuple independently.

Since the automata can only accept trees of height at most n − 1, there exists an

accepted tree if and only if there exists an accepted tree of height at most n − 1.

41

5. RESULTS FOR TIME-SPACE COMPLEXITY

Therefore, we only need to repeat this process of alternation at most n − 1 times.

Therefore, k-IEACT is solvable in O(n) time using at most ck log(n) bits for some

constant c.

Corollary 5.6. (k-IEACT) is LBL-reducible to (A
(T,S)
(n,k log)).

Theorem 5.7. (A
(T,S)
(n,k log)) is LBL-reducible to (k-IEACT).

Proof. Let an n-time and k log(n)-space bounded alternating Turing machine

M of size nM and an input string s of length ns be given. Together, an encoding of

M and s represent an arbitrary input for A
(T,S)
(n,k log). Let n denote the total size of M

and s combined i.e. n := nM + ns.

We previously investigated a reduction from ASk log to k-IET. We can apply this

construction to get k tree automata, denoted by {Ti}i∈[k], each of size at most p(n)

for some fixed polynomial p such that M accepts s if and only if
⋂
i∈[k] L(Ti) is non-

empty. However, the tree automata that we constructed might not be acyclic. We

provide an additional step to this construction to make the tree automata acyclic.

We construct k acyclic tree automata, denoted by {T ′i}i∈[k], each of size at most

(n + 1) · p(n) such that M accepts s if and only if
⋂
i∈[k] L(T ′i) is non-empty. For

each i ∈ [k], the states of T ′i are represented by an ordered pair (s, j) where s is

a state of Ti and j is a non-negative integer between 0 and n. The start state is

(s0, 0) where s0 is the start state of Ti. For each j ∈ [n]∪ {0}, a state (s, j) accepts

on an arity 0 symbol a, if s accepts on a in Ti. For each j ∈ [n], a state (s1, j − 1)

transitions to a state (s2, j) on arity 1 symbol a if s1 transitions to s2 on a in Ti.

Also, a state (s1, j − 1) transitions to an ordered pair of states ((s2, j), (s3, j)) on

arity 2 symbol a if s1 transitions to ordered pair (s2, s3) on a in Ti.

Since the construction essentially just takes each Ti and limits the height of

accepted trees. We have that a string x ∈ L(T ′i) if and only if x ∈ L(Ti) and x has

height at most n. Since the machine M is n-time bounded, we have that M accepts

s if and only if M accepts s in at most n steps. Hence, M accepts s if and only if

there exists a tree of height at most n in
⋂
i∈[k] L(Ti). Therefore, M accepts s if and

only if
⋂
i∈[k] L(T ′i) is non-empty.

42

5. RESULTS FOR TIME-SPACE COMPLEXITY

Corollary 5.8. (A
(T,S)
(n,k log)) is LBL-equivalent to (k-IEACT).

43

6

Results for the W Hierarchy

6.1 Results for W[1]

The following subsection is based on the author’s unpublished work [69].

6.1.1 Tree Shaped Automata

A finite automaton is said to be tree shaped if its state diagram takes the shape of

a tree.1 More formally, a finite automaton is said to be tree shaped2 if its state

diagram (without the dead state) forms a rooted tree satisfying the following.

(1) the root of the tree is the start state

(2) all transitions are directed towards the leaves

(3) there are no loops

Consider the following example of a tree shaped DFA D1:

1Tree shaped automata are not to be confused with tree automata. Tree shaped automata
read in strings as input while tree automata read in labeled trees as input.

2A deterministic tree shaped automaton can be viewed as a reduced form of a decision tree
where edges are allowed to be labelled with multiple alphabet characters. For background on
binary decision trees, we refer the reader to [52].

44

6. RESULTS FOR THE W HIERARCHY

q0start

q1

q2

q3

q4

q5

q6

q7 q8

0

1

0

0

1

0,1

0,1 1

Since tree shaped DFA’s don’t contain any loops or directed cycles, they can only

accept finite languages. Notice thatD1 accepts the language {0, 11, 000, 001, 1001, 1011}.
A branch is a path from the root to a leaf. For example, the branches of D1

are {0, 11, 00∗, 10∗1} where an asterisk abbreviates a multi-label 0 or 1 transition.

Since the accepting paths are exactly the branches, we can simply represent any

tree shaped automaton by its corresponding set of branches.

Let a natural number c be given. We denote the intersection non-emptiness

problem for k tree shaped DFA’s over the input alphabet [c] by (c, k)-IETD. Fur-

ther, for every fixed c, we have a parameterized problem ((c, k)-IETD)k∈N which we

abbreviate as ((c, k)-IETD). Although we do not pursue the topic of state complex-

ity, there is an exponential blow-up for converting tree shaped NFA’s to DFA’s. As

a result, we also consider the intersection non-emptiness problem for k tree shaped

NFA’s over the input alphabet [c] which we denote by (c, k)-IETN. In addition,

consider the following classical parameterized problems.

• (c, k)-CLIQUE: Given a c-uniform hypergraph1 H, does there exist a com-

plete hypergraph with k vertices in H?

• (c, k)-WSAT: Given a c-CNF boolean formula φ, does there exist a satisfying

assignment for φ with weight2 exactly k?

We proceed by showing that these four parameterized problems are LBL-equivalent

for all fixed c. First, by observing that every DFA is an NFA, we get the following.

1A c-uniform hypergraph is a hypergraph where each hyperedge is a set containing c vertices.
2The weight of an assignment is the same as the number of variables assigned the value 1.

45

6. RESULTS FOR THE W HIERARCHY

Proposition 6.1. For all fixed c, ((c, k)-IETD) is LBL-reducible to ((c, k)-IETN)

with O(n) instance blow-up.

Next, we reduce intersection non-emptiness for tree shaped NFA’s to the uniform

hypergraph clique problem.

Theorem 6.2. For all fixed c, ((c, k)-IETN) is LBL-reducible to ((c, k)-CLIQUE)

with O(nc) instance blow-up.

Proof. Let a list of tree shaped NFA’s {Ni}i∈[k] over input alphabet [c] be given.

Each NFA has at most m branches. From all the NFA’s combined, there are at most

k ·m branches. We construct a c-uniform graph H where each vertex represents a

branch. As a result, H has k ·m vertices.

Consider a set of c branches. For each branch and character position, we get

a set of possible characters from [c]. In other words, for each character position,

we get c subsets of [c] where each subset is associated with one of the branches.

Now, there is a hyperedge in H between a set of c branches if the following are

satisfied: (1) the c branches all have the same length, (2) no two branches come

from the same NFA, and (3) for each position, the corresponding c subsets of [c]

have a non-empty intersection.

We claim that the NFA’s have a non-empty intersection if and only if H has a

k-hyperclique. First, if the NFA’s have a non-empty intersection, then there exists

a string that satisfies all of the NFA’s. This string determines a branch for each of

the NFA’s where the branches form a k-hyperclique in H. Second, if there exists

a k-hyperclique, then there are k branches such that for every choice of c branches

and every character position, the corresponding c subsets of [c] have a non-empty

intersection. Therefore, for every character position, the corresponding k subsets

of [c] must also have a non-empty intersection or else we would be able to pick c of

the k subsets to get an empty intersection. As a result, for each position, we can

pick a character in the non-empty intersection. These choices of characters form a

string that is accepted by each of the NFA’s.

Now, we reduce the uniform hypergraph clique problem to the weighted satisfi-

ability problem.

46

6. RESULTS FOR THE W HIERARCHY

Theorem 6.3. For all fixed c, ((c, k)-CLIQUE) is LBL-reducible to ((c, k)-WSAT)

with O(nc) instance blow-up.

Proof. Let a c-uniform hypergraph H with vertices {vi}[n] be given. We con-

struct a c-CNF formula φ with n corresponding variables {vi}[n] and up to O(nc)

clauses. For each set S of c vertices from H such that S does not form a hyperedge

of H, φ has a corresponding clause. This clause consists of literals v̄i such that

vi ∈ S. As a result, the clause fails to be satisfied exactly when the c variables are

assigned the value 1. Now, it remains to show that H has a k-hyperclique if and

only if φ has a weight k satisfying assignment.

First, if H has a k-hyperclique, then we can assign the corresponding k variables

the value 1 and the remaining n − k variables the value 0. Consider an arbitrary

clause Ci of φ. The weight k assignment must satisfy Ci or else we would get that

the corresponding c vertices do not form a hyperedge of H yet are still members of

the k-hyperclique which is a contradiction. Second, if φ has a weight k satisfying

assignment, then we consider the corresponding set S of k vertices. Since all of

the clauses were satisfied, none of the clauses could have only contained variables

corresponding to vertices from S. Therefore, every subset of c vertices must form a

hyperedge of H.

Finally, we reduce the weighted satisfiability problem to intersection non-emptiness

for tree shaped DFA’s.

Theorem 6.4. For all fixed c, ((c, k)-WSAT) is LBL-reducible to ((c, k)-IETD)

with O(n3) instance blow-up.

Proof. The reduction is related to the reductions from Theorem 8 and 9. Let

a c-CNF formula of size n be given. We construct k tree shaped DFA’s each with

at most n3 states such that the formula has a k-weighted satisfying assignment if

and only if the DFA’s have a non-empty intersection.

The DFA reads an encoded k-weighted variable assignment followed by a clause

assignment. The k-weighted variable assignment is encoded as a sequence of k bit

strings each of length log(n). Each bit strings represents one of the k variables that

are assigned the value 1. Then, the clause assignment is a sequence of characters

47

6. RESULTS FOR THE W HIERARCHY

from [c] where the ith character in the sequence represents a choice of one variable

from the c variables in the ith clause.

Let i ∈ [k] be given. The ith DFA will only branch based on the ith and

(i + 1)th bit strings from the variable assignment. This will lead to n2 branches

each of length up to n for reading the clause assignment. The DFA will verify that

when bit strings are interpreted as numerical values, the ith bit string is less than

the (i + 1)th bit string. The branching can then be interpreted as storing the ith

variable that is assigned the value 1 followed by all variables assigned the value 0

up until the (i + 1)th variable that is assigned the value 1. As a result, this DFA

now has one of k blocks that make up the variable assignment.

Next, the DFA reads the clause assignment and will only pay attention to char-

acters for clauses that the block fails to satisfy. For such clauses, the DFA will

make sure that none of that blocks characters are read. Since the alphabet is [c],

this requires no branching.

Together, the DFA’s each branch based on a block of the assignment and together

verify that we never have all k blocks failing to satisfy a clause. As a result,

we get that their intersection is non-empty if and only if there exists a satisfying

assignment.

By combining the reductions carefully, we can guarantee that we have at most

an O(n3c) instance blow-up between any two of the problems.

Corollary 6.5. For all fixed c, the following are LBL-equivalent with O(n3c) in-

stance blow-up: ((c, k)-IETD), ((c, k)-IETN), ((c, k)-CLIQUE), and ((c, k)-WSAT).

Corollary 6.6. For all fixed c, ((c, k)-IETD) is W [1]-complete.

6.2 Results for W[NL]

6.2.1 Acyclic Automata

We investigate the intersection non-emptiness problem for one acyclic DFA and

k tree shaped DFA’s over a binary input alphabet. We denote this problem by

k-IE1AC+TD.

48

6. RESULTS FOR THE W HIERARCHY

Consider the parameterzied problems that are verifiable in linear time with

read-only access to a k log(n) bit certificate. The closure of such problems under

fpt-reductions defines the parameterized complexity class W [P]. Similarly, one

could consider space bounded verifiers. In particular, we consider the parameterzied

problems that are non-deterministically verifiable using log(n) bits of memory with

read-only access to a k log(n) bit certificate. The closure of such problems under

fpt-reductions defines the parameterized complexity class W [NL].

Consider the acceptance problem for languages non-deterministically verifiable

using log(n) bits of memory with read-only access to a k log(n) bit certificate. We

denote this problem by N
(S,G)
(log,k log) and denote the corresponding complexity measure

by NSPGUb where G stands for guesses.

Proposition 6.7. There exists c such that for every k,

k-IE1AC+TD ∈ NSPGUb(c log(n), k log(n)).

Sketch of proof. Using only a k log(n) bit certificate, we can guess a branch

from each of the k tree shaped DFA’s. Then, using non-deterministic logspace, we

check whether there exists an input string that matches each of the k branches and

the acyclic DFA. We do this as follows.

We store the current state in the acyclic DFA and a counter with value at most

n. To do this, we use roughly 2 log(n) bits of memory. Given such a state and

count, we non-deterministically guess which alphabet character comes next. We go

through each of the k branches and check to make sure that the alphabet character

is value for the position with the current count. If it is, then we increment the

counter and transition to the next state. We repeat this process until the count

reaches n or the end of the branches is reached. If we are in a final state, then we

accept.

Since the DFA’s have a non-empty intersection if and only if there is a choice of

branches that have a non-empty intersection with the acyclic DFA, k-IE1AC+TD

is verifiable with a k log(n) bit certificate using at most c log(n) bits for some

constant c.

49

6. RESULTS FOR THE W HIERARCHY

Corollary 6.8. (k-IE1AC+TD) is LBL-reducible to (N
(S,G)
(log,k log)).

Theorem 6.9. (N
(S,G)
(log,k log)) is LBL-reducible to (k-IE1AC+TD).

Proof. Let a non-deterministic Turing machine verifier M using at most log(n)

bits of memory and an input string x be given. We construct k tree shaped DFA’s

and an acyclic DFA such that the DFA’s have a non-empty intersection if and only

if there exists a satisfying certificate of k log(n) bits.

The idea is that the DFA’s will read in the certificate and the computation.

As the DFA’s are reading the input, they collectively verify that it is valid and

accepting. The k tree shaped DFA’s will each store a portion of the certificate of

length log(n). Then, the acyclic DFA will do the bulk of the work in verifying the

computation.

To make this work, we need to interleave copies of the certificate between each

configuration of the computation. In particular, the input string will have n configu-

rations and between each pair of configurations it will have a copy of the k log(n) bit

certificate. The tree shaped DFA’s each verify that their portion of the certificate is

consist from copy to copy while ignoring the configurations. Then, the acyclic DFA

keeps track of the tape heads, the log(n) bits on the work tape, and the current

state. Based on this information, the acyclic DFA can verify that the configurations

appropriately transition from one to the next making a valid computation. It also

verifies that the last configuration is accepting.

Together, the DFA’s verify that an input string corresponds with a choice of

certificate and valid and accepting computation. Therefore, the DFA’s have a non-

empty intersection if and only if such a certificate and computation exists.

Corollary 6.10. (k-IE1AC+TD) is W [NL]-complete.

50

7

Lower Bounds

The following chapter is loosely based on a combination of results from the author’s

works [68, 59, 69].

7.1 Unconditional Lower Bounds

7.1.1 Space Complexity

In the previous chapters, we focused on showing how solving intersection non-

emptiness problems is equivalent to simulating Turing machine computations. In

this section, we combine this equivalence with classical hierarchy theorems1 to prove

unconditional lower bounds.

The space hierarchy theorem is a classical result stating that for every space con-

structible function s(n), DSPACE(o(s(n))) (DSPACE(s(n)). In terms of binary

Turing machines, this result can be improved to

DSPACEb((1− ε) · s(n)) (DSPACEb(s(n)).

For non-deterministic space, it gets a little more complicated. One applies the

classical result that NL = co-NL to binary Turing machines to get that there exists

c such that for every k, NSPACEb(k log(n)) ⊆ co -NSPACEb(ck log(n)). Further by

1The proof of the space and time hierarchy theorems are based on combining universal simu-
lation and diagonalization.

51

7. LOWER BOUNDS

applying the approach of universal simulation and diagonalization from the space

hierarchy theorem, we get that there exists c such that for every k,

NSPACEb(c · k · s(n))) (NSPACEb(k · s(n)).

Paralleling this approach to the non-deterministic space hierarchy theorem for

binary Turing machines, we have the following theorem.

Theorem 7.1. There exist c1 and c2 such that for every k, NS
k log ∈ NSPACEb(c1k log(n))

and NS
k log /∈ NSPACEb(c2k log(n)).

Theorem 7.2. If an infinite family (Xk) is logspace LBL-equivalent to (NS
k log),

then there exist c1 and c2 such that for every k, Xk ∈ NSPACEb(c1k log(n)) and

Xk /∈ NSPACEb(c2k log(n)).

Proof. Let an infinite family (Xk) be given. Suppose that (Xk) is logspace

LBL-equivalent to (NS
k log) with reduction constants c1 and c2. Let k be given.

Consider the c1 log(n)-space bounded reduction from Xk to NS
k log. By universal

simulation, there is a non-deterministic binary Turing machine M that solves NS
k log

in d1k log(n) space for a constant d1 that does not depend on k. If we combine

the reduction with the machine M, we get a machine that solves Xk in c1d1k log(n)

space. Therefore, Xk ∈ NSPACEb(c1d1k log(n)).

Consider the c2 log(n)-space bounded reduction from NS
k log to Xk. By diag-

onalization, we get a constant d2 that does not depend on k such that NS
k log /∈

NSPACEb(d2k log(n)). Hence, we can’t solve Xk in d2k
c2

log(n) space or else we

would be able to combine such a solver with the reduction to show that NS
k log ∈

NSPACEb(d2k log(n)) which can’t happen. Therefore, Xk /∈ NSPACEb(d2k
c2

log(n)).

By combining the LBL equivalences1 from Chapter 3 with Theorem 7.2, we get

the following near tight complexity bounds.2

1It is important to notice that all of the LBL-equivalences from Chapter 3 can be improved
to logspace LBL-equivalences. See the proof of Theorem 3.3 for further details.

2Kasai and Iwata (1985) showed related lower bounds for non-deterministic logspace including
Corollary 7.3 [37].

52

7. LOWER BOUNDS

Corollary 7.3. There exist c1 and c2 such that for every k, k-IED ∈ NSPACEb(c1k log(n))

and k-IED /∈ NSPACEb(c2k log(n)).

Corollary 7.4. There exist c1 and c2 such that for every k, k-PASS ∈ NSPACEb(c1k log(n))

and k-PASS /∈ NSPACEb(c2k log(n)).

7.1.2 Time Complexity

The time hierarchy theorem is a classical result stating that for every time con-

structible function t(n), DTIME(o(t(n)
log(t(n))

)) (DTIME(t(n)). Paralleling this clas-

sical result, we have the following theorem.

Theorem 7.5. There exist c1 and c2 such that for every k, DT
nk
∈ DTIME(nc1k)

and DT
nk
/∈ DTIME(nc2k).

Theorem 7.6. If an infinite family (Xk) is LBL-equivalent to (DT
nk

), then there

exist c1 and c2 such that for every k, Xk ∈ DTIME(nc1k) and Xk /∈ DTIME(nc2k).

Proof. Let an infinite family (Xk) be given. Suppose that (Xk) is LBL-equivalent

to (DT
nk

) with reduction constants c1 and c2. Let k be given. Consider the O(nc1)-

time bounded reduction from Xk to DT
nk

. By universal simulation, there is a de-

terministic Turing machine M that solves DT
nk

in nd1k time for a constant d1 that

does not depend on k. If we combine the reduction with the machine M, we get a

machine that solves Xk in O(nc1d1k) time. Therefore, Xk ∈ DTIME(nc1d1k).

Consider the O(nc2)-time bounded reduction from DT
nk

to Xk. By diagonaliza-

tion, we get a constant d2 that does not depend on k such that DT
nk
/∈ DTIME(nd2k).

Hence, we can’t solve Xk in O(n
d2k
c2) time or else we would be able to combine such

a solver with the reduction to show that DT
nk
∈ DTIME(nd2k) which can’t happen.

Therefore, Xk /∈ DTIME(n
d2k
c2).

By combining the LBL equivalences from Chapter 4 with Theorem 7.6, we get

the following near tight complexity bounds.

Corollary 7.7. There exist c1 and c2 such that for every k, k-IE1P+D ∈ DTIME(nc1k)

and k-IE1P+D /∈ DTIME(nc2k).

53

7. LOWER BOUNDS

Corollary 7.8. There exist c1 and c2 such that for every k, k-IET ∈ DTIME(nc1k)

and k-IET /∈ DTIME(nc2k).

Corollary 7.9. There exist c1 and c2 such that for every k:

i) k-MPDA and k-co-MPDA ∈ DTIME(nc12
k

)

ii) k-MPDA and k-co-MPDA /∈ DTIME(nc22
k

).

7.2 Conditional Lower Bounds

7.2.1 Complexity Class Separations

In the following subsection we show the relationship between the collapse of classical

complexity classes and the LBL-equivalence of acceptance problems. As corollaries,

we get that the existence of time or space efficient algorithms for intersection non-

emptiness problems implies complexity class separations.

The following shows that in order for NL and P to be equal, there must be a

level-by-level equivalence between their corresponding acceptance problems.

Theorem 7.10. NL = P if and only if (NS
k log) and (DT

nk
) are logspace LBL-

equivalent.

Proof. Suppose that (NS
k log) and (DT

nk
) are logspace LBL-equivalent. Since

NL ⊆ P, we just need to show that P ⊆ NL. Let a language X ∈ P be given.

There exists some k such that X ∈ DTIME(nk). Consider the problem DT
nk

. Since

it is logspace reducible to NS
k log and NS

k log ∈ NL, we have that DT
nk
∈ NL. By a

trivial reduction from X to DT
nk

, we have that X ∈ NL.

For the other direction, suppose that NL = P. Since any k log(n)-space bounded

binary Turing machine can be simulated in roughly deterministic nk time, we can

perform a universal simulation so that NS
k log ∈ DTIME(nck) for some constant c

that does not depend on k. Therefore, (NS
k log) is logspace LBL-reducible to (DT

nk
).

Next, since DT
n2 ∈ P and NL = P, DT

n2 ∈ NL. Hence, there exists c such that

DT
n2 ∈ NSPACEb(c log(n)).

54

7. LOWER BOUNDS

Let k be given. We provide a logspace reduction from DT
nk

to DT
n2 . Let an input

for DT
nk

consisting of an nk-time bounded machine M and an input x be given. We

can modify M to get a n2-time bounded1 machine M′ and modify x to get a padded

string y#x where the padding y has length at least |x|k. Then, M′’s computation

is as follows. It first breaks an input string into a padding of length m1 and right

part of length m2. It verifies that m1 > mk
2. Then, it simulates M on the right part

and accepts according to M’s computation. Therefore, M accepts x if and only if

M′ accepts y#x.

By combining the reduction and the logspace algorithm for DT
n2 we have DT

nk
∈

NSPACEb(c · d · k log(n)) for some overhead constant d that does not depend on k.

Since k was arbitrary, we have that (DT
nk

) is LBL-reducible to (NS
k log).

Corollary 7.11. If for every a > 0, there exists k such that NS
k log ∈ DTIME(nak),

then NL 6= P.

Proof. Suppose that for every a > 0, there exists k such thatNS
k log ∈ DTIME(nak).

In addition, suppose for sake of contradiction that NL = P. By Theorem 7.10,

(NS
k log) and (DT

nk
) are logspace LBL-equivalent. Hence, there is a constant c such

that for every k, there is a c log(n)-space bounded reduction from DT
nk

to NS
k log.

Therefore, this reduction is nc-time bounded as well.

Next, if we choose a = 1−ε
c

, then there exists some k sufficiently large such that

NS
k log ∈ DTIME(n

(1−ε)·k
c).

By combining this algorithm with the preceding reduction, we get that

DT
nk ∈ DTIME(n(1−ε)·k).

Therefore,

DTIME(nk) ⊆ DTIME(n(1−ε)·k)

which contradicts the time hierarchy theorem.

By applying LBL-equivalences from Chapter 3, we get the following corollaries.

1It’s worth noticing that this machine can be made c · n-time bounded for some constant c.

55

7. LOWER BOUNDS

Corollary 7.12. If for every a > 0, there exists k such that k-IED ∈ DTIME(nak),

then NL 6= P.

Corollary 7.13. If for every a > 0, there exists k such that k-PASS ∈ DTIME(nak),

then NL 6= P.

The following shows that in order for P and PSPACE to be equal, there must

be a level-by-level equivalence between their corresponding acceptance problems.

Theorem 7.14. P = PSPACE if and only if (DT
nk

) and (DS
nk

) are LBL-equivalent.

Proof. Suppose that (DT
nk

) and (DS
nk

) are logspace LBL-equivalent. Since

P ⊆ PSPACE, we just need to show that PSPACE ⊆ P. Let a language

X ∈ PSPACE be given. There exists some k such that X ∈ DSPACE(nk). Con-

sider the problem DS
nk

. Since it is polynomial time reducible to DT
nk

and DT
nk
∈ P,

we have that DS
nk
∈ P. By a trivial reduction from X to DS

nk
, we have that X ∈ P.

For the other direction, suppose that P = PSPACE. Since any deterministic

nk-time bounded Turing machine uses at most nk space, we can perform a universal

simulation so that DT
nk
∈ DSPACE(nck) for some constant c that does not depend

on k. Therefore, (DT
nk

) is LBL-reducible to (DS
nk

). Next, since DS
n2 ∈ PSPACE

and P = PSPACE, DS
n2 ∈ P. Hence, there exists c such that DT

n2 ∈ DTIME(nc).

Let k be given. We provide a polynomial time reduction from DS
nk

to DS
n2 . Let

an input for DS
nk

consisting of an nk-space bounded machine M and an input x be

given. We can modify M to get a n2-space bounded1 machine M′ and modify x to

get a padded string y#x where the padding y has length at least |x|k. Then, M′’s

computation is as follows. It first breaks an input string into a padding of length

m1 and right part of length m2. It verifies that m1 > mk
2. Then, it simulates M on

the right part and accepts according to M’s computation. Therefore, M accepts x

if and only if M′ accepts y#x.

By combining the reduction and the polynomial time algorithm for DT
n2 we have

DT
nk
∈ DTIME(nc·d·k) for some overhead constant d that does not depend on k.

Since k was arbitrary, we have that (DS
nk

) is LBL-reducible to (DT
nk

).

1It’s worth noticing that this machine can be made (1 + o(1)) · n-space bounded.

56

7. LOWER BOUNDS

Corollary 7.15. If for every a > 0, there exists k such that DT
nk
∈ DSPACE(nak),

then P 6= PSPACE.

Proof. Suppose that for every a > 0, there exists k such thatDT
nk
∈ DSPACE(nak).

In addition, suppose for sake of contradiction that P = PSPACE. By Theorem

7.14, (DT
nk

) and (DS
nk

) are LBL-equivalent. Hence, there is a constant c such that

for every k, there is a nc-time bounded reduction from DS
nk

to DT
nk

.

Next, if we choose a = 1−ε
c

, then there exists some k sufficiently large such that

DT
nk ∈ DSPACE(n

(1−ε)·k
c).

By combining this algorithm with the preceding reduction, we get that

DS
nk ∈ DSPACE(n(1−ε)·k).

Therefore,

DSPACE(nk) ⊆ DSPACE(n(1−ε)·k)

which contradicts the space hierarchy theorem.

By applying LBL-equivalences from Chapter 4, we get the following corollaries.

Corollary 7.16. If for every a > 0, there exists k such that k-IE1P+D ∈ DSPACE(nak),

then P 6= PSPACE.

Corollary 7.17. If for every a > 0, there exists k such that k-IET ∈ DSPACE(nak),

then P 6= PSPACE.

7.2.2 QBF-Hardness

The following subsection is adapted from a response by the author on a post from

the cstheory stackexchange community titled “Deciding emptiness of intersection of

regular languages in subquadratic time”.

Theorem 7.18. Let a natural number k ≥ 2 be given. If k-IED ∈ DTIME(nδ),

then NSPACEb(n) ⊆ DTIME(poly(n) · 2 δn
k).

57

7. LOWER BOUNDS

Proof. Suppose that we can solve intersection non-emptiness for k DFA’s in

O(nδ) time. Let a non-deterministic n-space bounded binary Turing machine M be

given. Let an input string x of length n be given. A computation of M on input x

can be represented by a finite list of configurations. Each configuration consists of

a state, a position on the input tape, a position on the work tape, and up to n bits

of memory that represent the work tape.

Consider that the work tape is split into k block. In other words, we have k

blocks each with n
k

work tape cells. Each configuration can be broken up into k

pieces. For each i ∈ [k], the ith piece consists of the state, the position on the input

tape, the position on the work tape, and the n
k

bits from the ith block.

Next, for each i, we build a DFA Di whose states are ith pieces of configurations.

The alphabet characters are instructions that say which state to go to, how the tape

heads should move, and how the work tape’s active cell should be manipulated. The

idea is that the DFA’s read in a list of instructions corresponding to a computation

of M on input x and together verify that it is valid and accepting. The DFA’s

always agree with each other on where the tape heads are because that information

is stored in their states and the instruction of where it moves next is included in

the input characters. Therefore, for each i ∈ [k], we can have Di verify that the

instruction is appropriate when the work tape position is in the ith piece.

In total, there are at most poly(n) · 2n
k states for each DFA and at most poly(n)

distinct alphabet characters. By the initial assumption, it follows that we can solve

intersection non-emptiness for the k DFA’s in poly(n) · 2 δn
k time.

Determining whether a Quantified Boolean Formula evaluates to true is a classic

PSPACE-complete problem. This problem is a natural extension of boolean satis-

fiability (SAT) and we denote it by QBF. The exponential time hypothesis (ETH)

says that we cannot solve 3-SAT in 2o(n) time. Similarly, a simplified form of the

strong exponential time hypothesis (SETH) says that we cannot solve CNF-SAT in

2(1−ε)·n time. We consider corresponding hypotheses for QBF. In particular, QBF-

ETH denotes the hypothesis that we cannot solve QBF in 2o(n) time and QBF-SETH

denotes the hypothesis that we cannot solve QBF in 2(1−ε)·n time.

58

7. LOWER BOUNDS

Since QBF ∈ DSPACEb(n+O(log(n))), one could apply the approach from the

preceding theorem to get the following corollaries.

Corollary 7.19. If there exists k such that k-IED is solvable in O(nk−ε) time, then

QBF-SETH is false.

Corollary 7.20. If there exist functions f and g such that g ∈ o(n) and there exists

a uniform algorithm for solving (k-IED) in f(k)·ng(k) time, then QBF-ETH is false.

7.2.3 SAT-Hardness

Work from [12, 15] showed that more efficient algorithms for W [1]-complete prob-

lems would refute the exponential time hypothesis and collapse parts of the W-

hierarchy. Further, work from [54] showed that slightly more efficient algorithms

for W [2]-complete problems would refute the strong exponential time hypothesis.

In Chapter 6, we showed that the intersection non-emptiness problem for tree

shaped DFA’s is W [1]-complete. We present results to show similar implications

for the existence of more efficient algorithms for this intersection problem.

Theorem 7.21. If (2, 2)-IETD is solvable in O(n2−ε) time, then SETH is false.

Proof. We define a special kind of reduction from CNF-SAT to (2, 2)-IETD.

Let a CNF formula φ with n variables and m clauses be given. We construct DFA’s

D1 and D2 with (m + n) · 2n
2 states each such that φ is satisfiable if and only if

L(D1) ∩ L(D2) is non-empty.

A variable assignment for φ is a bit string of length n. Consider an assignment

α. We can break α up into two blocks α1 and α2 of n
2

bits each. Additionally, we

consider a clause assignment for α. A clause assignment is a bit string of length m.

We say that a clause assignment is valid for α if for each clause ci of φ, at least one

of the following is satisfied:

• the ith bit of the clause assignment is 0 and α1 forces ci to be satisfied.

• the ith bit of the clause assignment is 1 and α2 forces ci to be satisfied.

59

7. LOWER BOUNDS

The DFA’s D1 and D2 will read as input a variable assignment α consisting of

blocks α1 and α2 followed by a corresponding clause assignment β. The DFA D1

branches while reading α1 and ignores α2. Similarly, D2 ignores α1 and branches

while reading α2. Then, D1 reads the clause assignment β and verifies that for each

i, if α1 doesn’t force clause ci to be satisfied, then β has a 1 at the ith position.

Similarly, D2 reads the clause assignment β and verifies that for each i, if α2 doesn’t

force clause ci to be satisfied, then β has a 0 at the ith position.

Together, D1 and D2 collectively verify that for each clause ci, either α1 or α2

forces ci to be satisfied. Therefore, D1 and D2 collectively verify that β is valid for

α. Further, φ is satisfiable if and only if there is a variable assignment α and clause

assignment β such that β is valid for α. We conclude that φ is satisfiable if and

only if D1 and D2 have a non-empty intersection.

Theorem 7.22. If there exists k such that (c, k)-IETD is solvable in O(nk−ε) time

where c = k, then SETH is false.

Proof. In a similar manner as Theorem 7.21, we reduce CNF-SAT to the in-

tersection problem1. Let a natural number k be given. Let a CNF formula φ with

n variables and m clauses be given. We construct DFA’s {Di}i∈[k] with (m+n) · 2n
k

states each such that φ is satisfiable if and only if
⋂
i∈[k] L(Di) is non-empty.

Each variable assignment α for φ is broken up into k blocks {αi}i∈[k] of n
k

bits

each. A clause assignment for α is a string of m characters over the alphabet [k].

A clause assignment is valid for α if for each clause, if the corresponding character

is i ∈ [k], then αi forces the clause to be satisfied.

The DFA’s each read in an assignment α followed by a clause assignment β. The

DFA Di verifies that if the ith block doesn’t satisfy a clause, then the corresponding

clause assignment character is not i. Collectively, the DFA’s verify that β is valid

for α. As a result, we get that φ is satisfiable if and only if the DFA’s have a

non-empty intersection.

1Alternatively, one could reduce k-dominating set to the intersection problem where c = k
and them apply the conditional lower bound from [54]. Further, this alternative approach would
show that the intersection problem where c = k is W [2]-hard.

60

7. LOWER BOUNDS

Theorem 7.23. If (c, k)-IETD is solvable in O(nδ) time, then c-SAT is solvable in

poly(n) · 2 δn
k time.

Sketch of proof. In Theorem 7.22, it was shown how to reduce CNF-SAT to

(c, k)-IETD where c = k. If we instead consider c-SAT, we can do a similar reduction

where the DFA’s are over the alphabet [c]. Since each clause has at most c literals,

at most c assignment blocks are relevant for determining if that clause is satisfied.

For each clause, a character from [c] will be used to represent which of the relevant

blocks forces the clause to be satisfied.

By applying the equivalence between the intersection problem and the clique

problem from Chapter 6, the next theorem follows from a conditional lower bound

for the clique problem from [12].

Theorem 7.24. If there exist functions f and g such that g ∈ o(n) and there exists

a uniform algorithm for solving ((2, k)-IETD) in f(k) ·ng(k) time, then ETH is false.

61

8

Conclusion

8.1 Summary of Results

By exploiting the dual nature of the intersection non-emptiness problem as a con-

straint satisfaction and graph reachability problem, we were able to show param-

eterized equivalences with classical Turing machine acceptance problems. Further,

we showed how intersection non-emptiness for different kinds of automata classify

different kinds of computational machines.

Following from this classification, we were able to show parameterized complete-

ness results for classes W [1], W [NL], XL, XNL, XP, and XEXP. In addition,

we showed that solving intersection non-emptiness problems more space or time

efficiently in some cases is either impossible, would lead to major complexity class

separation results, or would refute well known hypotheses about classical complete

problems.

In the following table, we list the primary equivalences and completeness results

that have been presented in this work.1

1A cell is denoted with N/A if no well known machine model or parameterized complexity
class appropriately represents the intersection non-emptiness problem.

62

8. CONCLUSION

Main Complexity Results for Intersection Non-Emptiness Problems

Type of Automata
Intersection

Problem

Acceptance

Problem

Parameterized

Complexity

k Tree Shaped DFA’s (k-IETD) N/A W [1]-complete

1 Acyclic DFA and k

Tree Shaped DFA’s
(k-IE1AC+TD) (N

(S,G)
(log,k log)) W [NL]-complete

k Acyclic DFA’s (k-IEAC) (N
(T,S)
(n,k log)) N/A

k Symmetric Finite

Automata
(k-IES) (DS

k log) XL-complete

k Deterministic Finite

Automata
(k-IED) (NS

k log) XNL-complete

k Acyclic Tree

Automata
(k-IEACT) (A

(T,S)
(n,k log)) N/A

k Tree Automata (k-IET) (ASk log) XP-complete

1 Pushdown Automaton

and k DFA’s
(k-IE1P+D) (AuxSk log) XP-complete

1 Pushdown Tree

Automaton and k TA’s
(k-IE1PT+T) (AltAuxSk log) XEXP-complete

63

8. CONCLUSION

8.2 Further Work

This thesis includes the author’s primary contributions on intersection non-emptiness

problems. Many partial results have been excluded because they are incomplete or

of an unrelated form. With plans to continue working in this area we discuss further

directions.

Applications to Database Theory: Join problems and intersection non-

emptiness problems seem to have a natural correspondence. In particular, a table

corresponds with a finite automaton and the join of tables corresponds with a prod-

uct of automata. Using this correspondence, the non-empty natural join problem

for k tables with incomplete information can be related to the intersection non-

emptiness for k tree shaped automata. In addition, the non-empty join problem

for k boolean n-by-log(n) tables can be related to the intersection non-emptiness

problem for k unary finite automata.

Hard Problems in Polynomial Time: There are several popular hard prob-

lems in polynomial time. For example, boolean matrix multiplication (BMM) and

three sum (3SUM). Some of these problems have natural reductions to intersection

non-emptiness. For example, the triangle finding problem for a graph with n verti-

cies and m edges can be reduced to intersection non-emptiness for two DFA’s where

one DFA has n states and the other has m states.

Exact Time Complexity: It’s not known if the intersection non-emptiness

problem for k DFA’s can be solved in less than nk time. However, the intersection

non-emptiness problem for k tree shaped DFA’s can be solved in n0.792k time by

a reduction to the k-clique problem. Also, although not presented in this work,

the intersection non-emptiness problem for k unary DFA’s can be solved in n1.4k

time by a reduction to triangle finding in a sparse graph. Do there exist any more

efficient algorithms?

Parameterized Complexity Lower Bounds: In [36], the authors consider

an alternative parameterization of the intersection non-emptiness problem where

m denotes the size of the largest DFA, n denotes the size of the second largest

DFA, and k denotes the number of DFA’s. They showed how the existence of

64

8. CONCLUSION

a uniform algorithm for solving (k-IED) that runs in m · no(k) time implies that

NL ⊆ DTIME(n1+ε) for all ε > 0. In the same spirit as parameterized complexity

conditional lower bounds from [13, 12, 14, 15], one can show that if there exist

functions f and g such that g ∈ o(n) and there exists a uniform algorithm for

solving (k-IED) in f(k) ·mO(1) · ng(k) time, then FPT = XNL.

Self-Reducibility and Kernelization: The intersection non-emptiness prob-

lem has nice self-reducibility properties. In particular, it satisfies the OR-compositional

property from [7, 51]. As a result, if intersection non-emptiness has a polyno-

mial kernelization, then work from [23] (see also [19]) suggests that we would have

PSPACE ⊆ co-NP/poly. Moreover, we would get that the polynomial hierar-

chy collapses to the third level [73]. It further seems that if the kernelization is

parameter preserving, then we would get P = PSPACE.

65

Bibliography

[1] N. Alon and Wolfgang Maass. Meanders, ramsey theory and lower bounds for

branching programs. In Foundations of Computer Science, 1986., 27th Annual

Symposium on, pages 410–417, Oct 1986.

[2] Rajeev Alur and Swarat Chaudhuri. Branching pushdown tree automata. In

Proceedings of the 26th International Conference on Foundations of Software

Technology and Theoretical Computer Science, FSTTCS’06, pages 393–404,

Berlin, Heidelberg, 2006. Springer-Verlag.

[3] M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown au-

tomata is 2ETIME-Complete. Developments in Language Theory, 2008.

[4] Michael Blondin. Complexité du problème d’intersection d’automates. B.sc.

honour thesis, Université de Montréal, 2009.

[5] Michael Blondin. Complexité raffinée du problème d’intersection d’automates.

M.sc. thesis, Université de Montréal, 2012.

[6] Michael Blondin, Andreas Krebs, and Pierre McKenzie. The complexity of

intersecting finite automata having few final states. Computational Complexity,

2014.

[7] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny

Hermelin. On problems without polynomial kernels. J. Comput. Syst. Sci.,

75(8):423–434, December 2009.

66

BIBLIOGRAPHY

[8] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. Comput., 35(8):677–691, August 1986.

[9] Marco Cesati. The turing way to parameterized complexity. Journal of Com-

puter and System Sciences, 67(4):654 – 685, 2003.

[10] Jacques Chabin and Pierre Réty. Visibly pushdown languages and term rewrit-

ing. In Boris Konev and Frank Wolter, editors, Frontiers of Combining Sys-

tems: 6th International Symposium, FroCoS 2007 Liverpool, UK, September

10-12, 2007 Proceedings, pages 252–266, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg.

[11] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.

J. ACM, 28(1):114–133, January 1981.

[12] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad A.

Kanj, and Ge Xia. Tight lower bounds for certain parameterized np-hard

problems. Information and Computation, 201(2):216 – 231, 2005.

[13] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Linear fpt reductions

and computational lower bounds. In Proceedings of the Thirty-sixth Annual

ACM Symposium on Theory of Computing, STOC ’04, pages 212–221, New

York, NY, USA, 2004. ACM.

[14] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. W-hardness under lin-

ear fpt-reductions: Structural properties and further applications. In Lusheng

Wang, editor, Computing and Combinatorics: 11th Annual International Con-

ference, COCOON 2005 Kunming, China, August 16–19, 2005 Proceedings,

pages 975–984, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[15] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational

lower bounds via parameterized complexity. Journal of Computer and System

Sciences, 72(8):1346 – 1367, 2006.

67

BIBLIOGRAPHY

[16] D. Chistikov, W. Czerwinski, P. Hofman, M. Pilipczuk, and M. Wehar. Shortest

paths in one-counter systems. In FoSSaCS 2016 (to appear), 2016.

[17] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,

S. Tison, and M. Tommasi. Tree automata techniques and applications, Octo-

ber 2007.

[18] Stephen A. Cook. Characterizations of pushdown machines in terms of time-

bounded computers. J. ACM, 18(1):4–18, January 1971.

[19] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel

Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized

Algorithms. Springer Publishing Company, Incorporated, 1st edition, 2015.

[20] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and

completeness I: basic results. SIAM J. Comput., 24(4):873–921, 1995.

[21] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and

completeness II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–

131, 1995.

[22] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-

graphs in Computer Science. Springer, 1999.

[23] Andrew Drucker. New limits to classical and quantum instance compression.

In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of

Computer Science, FOCS ’12, pages 609–618, Washington, DC, USA, 2012.

IEEE Computer Society.

[24] Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space com-

plexity of parameterized problems. In Dimitrios M. Thilikos and Gerhard J.

Woeginger, editors, Parameterized and Exact Computation: 7th International

Symposium, IPEC 2012, Ljubljana, Slovenia, September 12-14, 2012. Proceed-

ings, pages 206–217, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

68

BIBLIOGRAPHY

[25] Henning Fernau, Pinar Heggernes, and Yngve Villanger. A multi-parameter

analysis of hard problems on deterministic finite automata. Journal of Com-

puter and System Sciences, 81(4):747 – 765, 2015.

[26] Henning Fernau and Andreas Krebs. Problems on finite automata and the

exponential time hypothesis. In Yo-Sub Han and Kai Salomaa, editors, Imple-

mentation and Application of Automata: 21st International Conference, CIAA

2016, Seoul, South Korea, July 19-22, 2016, Proceedings, pages 89–100, Cham,

2016. Springer International Publishing.

[27] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006.

[28] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression

and succinct pcps for np. J. Comput. Syst. Sci., 77(1):91–106, January 2011.

[29] Zvi Galil. Hierarchies of complete problems. Acta Informatica, 6(1):77–88,

1976.

[30] Inène Guessarian. Pushdown tree automata. Mathematical systems theory,

16(1):237–263, 1983.

[31] Eitan M. Gurari and Oscar H. Ibarra. The complexity of decision problems for

finite-turn multicounter machines. Journal of Computer and System Sciences,

22(2):220 – 229, 1981.

[32] Markus Holzer and Pierre McKenzie. Alternating and empty alternating aux-

iliary stack automata. Theoretical Computer Science, 299(1):307 – 326, 2003.

[33] H. B. Hunt, III. On the time and tape complexity of languages I. In Proceedings

of the Fifth Annual ACM Symposium on Theory of Computing, STOC ’73,

pages 10–19, New York, NY, USA, 1973. ACM.

[34] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision

problems. J. ACM, 25(1):116–133, January 1978.

69

BIBLIOGRAPHY

[35] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems

have strongly exponential complexity? Journal of Computer and System Sci-

ences, 63(4):512 – 530, 2001.

[36] G. Karakostas, R. J. Lipton, and A. Viglas. On the complexity of intersect-

ing finite state automata and NL versus NP. Theoretical Computer Science,

302:257–274, 2003.

[37] Takumi Kasai and Shigeki Iwata. Gradually intractable problems and nonde-

terministic log-space lower bounds. Mathematical systems theory, 18(1):153–

170, 1985.

[38] Ron Kohavi. Bottom-up induction of oblivious read-once decision graphs:

Strengths and limitations. In Proceedings of the Twelfth National Conference

on Artificial Intelligence (Vol. 1), AAAI ’94, pages 613–618, Menlo Park, CA,

USA, 1994. American Association for Artificial Intelligence.

[39] Dexter Kozen. Lower bounds for natural proof systems. Proc. 18th Symp. on

the Foundations of Computer Science, pages 254–266, 1977.

[40] Philipp Kuinke. Survey of parameter-preserving reductions. Bachelor thesis,

RWTH Aachen University, 2013.

[41] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Pushdown specifications.

In Matthias Baaz and Andrei Voronkov, editors, Logic for Programming, Ar-

tificial Intelligence, and Reasoning: 9th International Conference, LPAR 2002

Tbilisi, Georgia, October 14–18, 2002 Proceedings, pages 262–277, Berlin, Hei-

delberg, 2002. Springer Berlin Heidelberg.

[42] S. L. Torre, P. Madhusudan, and G. Parlato. An infinite automaton charac-

terization of double exponential time. CSL 2008, pages 33–48, 2008.

[43] Richard E. Ladner, Richard J. Lipton, and Larry J. Stockmeyer. Alternating

pushdown and stack automata. SIAM Journal on Computing, 13(1):135–155,

1984.

70

BIBLIOGRAPHY

[44] Richard E. Ladner, Larry J. Stockmeyer, and Richard J. Lipton. Alternation

bounded auxiliary pushdown automata. Information and Control, 62(2):93 –

108, 1984.

[45] Klaus-Jörn Lange and Peter Rossmanith. The emptiness problem for intersec-

tions of regular languages. Lecture Notes in Computer Science, 629:346–354,

1992.

[46] Harry R. Lewis and Christos H. Papadimitriou. Symmetric space-bounded

computation. Theoretical Computer Science, 19(2):161 – 187, 1982.

[47] R. J. Lipton. On the intersection of finite automata. Gödel’s Lost Letter and

P=NP, August 2009.

[48] R. J. Lipton and K. W. Regan. The power of guessing. Gödel’s Lost Letter

and P=NP, November 2012.

[49] P. Madhusudan and Gennaro Parlato. The tree width of automata with aux-

iliary storage. POPL 2011, 2011.

[50] W. Martens and S. Vansummeren. Automata and logic on trees: Algorithms.

ESSLLI 2007, 2007.

[51] Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on

kernelization. Discrete Optimization, 8(1):110 – 128, 2011. Parameterized

Complexity of Discrete Optimization.

[52] Bernard M. E. Moret. Decision trees and diagrams. ACM Comput. Surv.,

14(4):593–623, December 1982.

[53] Johannes Osterholzer. Complexity of uniform membership of context-free tree

grammars. In Andreas Maletti, editor, Algebraic Informatics: 6th International

Conference, CAI 2015, Stuttgart, Germany, September 1-4, 2015. Proceedings,

pages 176–188, Cham, 2015. Springer International Publishing.

71

BIBLIOGRAPHY

[54] Mihai Pătraşcu and Ryan Williams. On the possibility of faster sat algorithms.

In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA ’10, pages 1065–1075, Philadelphia, PA, USA, 2010. Society

for Industrial and Applied Mathematics.

[55] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal, 1959.

[56] Narad Rampersad and Jeffrey Shallit. Detecting patterns in finite regular and

context-free languages. Information Processing Letters, 110, 2010.

[57] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–

17:24, September 2008.

[58] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential

time(preliminary report). In Proceedings of the Fifth Annual ACM Symposium

on Theory of Computing, STOC ’73, pages 1–9, New York, NY, USA, 1973.

ACM.

[59] Joseph Swernofsky and Michael Wehar. On the complexity of intersecting

regular, context-free, and tree languages. In ICALP 2015 (Part II), pages

414–426, 2015.

[60] Shinichi Tanaka and Takumi Kasai. The emptiness problem for indexed

language is exponential-time complete. Systems and Computers in Japan,

17(9):29–37, 1986.

[61] H. Todd Wareham. The parameterized complexity of intersection and com-

position operations on sets of finite-state automata. In Shen Yu and Andrei

Păun, editors, Implementation and Application of Automata: 5th International

Conference, CIAA 2000 London, Ontario, Canada, July 24–25, 2000 Revised

Papers, pages 302–310, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[62] S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive

languages. LICS 2007, pages 161–170, 2007.

72

BIBLIOGRAPHY

[63] L. G. Valiant. Decision procedures for families of deterministic pushdown au-

tomata. Technical report, University of Warwick, Coventry, UK, 1973.

[64] Virginia Vassilevska. Efficient algorithms for clique problems. Information

Processing Letters, 109(4):254 – 257, 2009.

[65] Margus Veanes. On computational complexity of basic decision problems of

finite tree automata. UPMAIL Technical Report 133, 1997.

[66] Igor Walukiewicz. Pushdown processes: Games and model-checking. Informa-

tion and Computation, 164(2):234 – 263, 2001.

[67] Michael Wehar. Intersection emptiness for finite automata. Honors thesis,

Carnegie Mellon University, 2012.

[68] Michael Wehar. Hardness results for intersection non-emptiness. In ICALP

2014 (Part II), pages 354–362, 2014.

[69] Michael Wehar. Intersection non-emptiness for tree shaped finite automata.

Unpublished, 2016.

[70] Michael Wehar. Solving the inversion problem. Private communication,

September 2016.

[71] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its

implications. Theoretical Computer Science, 348(2–3):357 – 365, 2005.

[72] Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete struc-

tures. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’14, pages 1867–1877. SIAM, 2014.

[73] Chee K. Yap. Some consequences of non-uniform conditions on uniform classes.

Theoretical Computer Science, 26(3):287 – 300, 1983.

73

	Abstract
	1 Introduction
	1.1 Formal Statement
	1.2 Motivation
	1.3 History
	1.3.1 Intersection Non-Emptiness
	1.3.2 Related Problems

	2 Preliminaries
	2.1 Turing Machines
	2.2 Complexity
	2.2.1 Complexity Measures
	2.2.2 Complexity Classes
	2.2.3 Acceptance Problems

	2.3 Parameterized Complexity
	2.3.1 Parameterized Reductions
	2.3.2 Parameterized Complexity Classes

	2.4 Intersection Non-Emptiness
	2.4.1 General Formulation
	2.4.2 Naming Conventions and Problems

	3 Results for Space Complexity
	3.1 Non-Deterministic Logspace
	3.1.1 Deterministic Finite Automata
	3.1.2 Multi-Pass Automata

	3.2 Deterministic Logspace
	3.2.1 Symmetric Automata

	4 Results for Time Complexity
	4.1 Polynomial Time
	4.1.1 Pushdown Automata
	4.1.2 Multi-Stack Pushdown Automata
	4.1.3 Tree Automata

	4.2 Exponential Time
	4.2.1 Pushdown Tree Automata

	5 Results for Time-Space Complexity
	5.1 Deterministic Linear Time and Logspace
	5.1.1 Acyclic Automata

	5.2 Alternating Linear Time and Logspace
	5.2.1 Acyclic Tree Automata

	6 Results for the W Hierarchy
	6.1 Results for W[1]
	6.1.1 Tree Shaped Automata

	6.2 Results for W[NL]
	6.2.1 Acyclic Automata

	7 Lower Bounds
	7.1 Unconditional Lower Bounds
	7.1.1 Space Complexity
	7.1.2 Time Complexity

	7.2 Conditional Lower Bounds
	7.2.1 Complexity Class Separations
	7.2.2 QBF-Hardness
	7.2.3 SAT-Hardness

	8 Conclusion
	8.1 Summary of Results
	8.2 Further Work

	Bibliography

