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Image Generators

● We are investigating procedural image generation
● Possible examples include:

○ Creating a pattern or artwork based on a predefined 
algorithm or a set of rules

○ Visualizing a diagram based on a data file
○ Displaying a scene based on predefined models

● Possible use cases: Art, Video Games, Design, Marketing, etc 



AlgoArt Platform

● Goal: Build bridges between computing and art.  Offer a low barrier of 
entry to create procedurally generated art and graphics.

● Web-based Platform consisting:
○ Open Source Creator Studio (on GitHub)
○ Digital Gallery including user reviews and feedback

● Drawing algorithms are written in JavaScript (JS)
○ Every algorithm follows a framework:

■ Methods for initialize, start, pause, reset, drawOneStep
■ Has a params JS file for customization

https://github.com/Algorithmically-Generated-Artwork/Drawing-Program


Our Image Data Set

● We generated images using our platform AlgoArt.org
● Developed 15 different drawings algorithms which we used to 

create 8,000+ unique images
● Received 23,000+ comparison-based reviews
● We hope to expand to more comprehensive reviews in the 

future to better analyze and understand our dataset

https://algoart.org
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How Do We Incorporate Variation?

● Drawing Algorithms
○ Each algorithm has its own parameters file
○ The parameters manipulate the drawing process
○ Our platform loads the parameters file initially, but the user can 

modify the params interactively through the UI
● DEMO (Creator Studio)

https://github.com/Algorithmically-Generated-Artwork/Drawing-Program


Defining Parameters to Create Variation

● Each algorithm was designed with its own set of parameters

● Although some parameters are very unique to the kind of drawing process, 
there are generic parameters that apply to most of our drawing algorithms

● Generic Parameter Categories:
○ Colors, Palettes, and Gradients
○ Angles and Uniformity
○ Paths and Movement
○ Sizes and Repetitions



Colors, Palettes, and 
Gradients (Part 1)     
(Geometric Patterns Algorithm)

● Select a starting point
● Randomly sample neighboring 

points to possibly move to next
● Select one point to move to and 

connect it together with a line

Random Colors (left), Linear Gradient (right)
Developed by M. Wehar



Colors, Palettes, and 
Gradients (Part 2)     
(Overlapping Tiles Algorithm)

● Draws a series of grids of tiles on 
top of each other

● As the tiles layer on top of each 
other, they blend together 
creating intricate patterns

Random Colors (left), Palette (right)
Developed by M. Wehar



Angles and Uniformity (Part 1) 
(Constellations Algorithm)

● Builds structures that resemble 
constellations in the night sky

● Structures are made through a 
step-by-step process of selecting 
points and connecting them to the 
existing structures

Random Angles (left), Right Angles (right)
Developed by J. Gallardo Moreno



Angles and Uniformity (Part 2) 
(Trees Algorithm)

● Start with a root node
● Expand outward one step at a time 

creating many branches
● Trees can resemble real-life or look 

more artificial depending on 
parameter choices

Random Angles (left), Repeated Angles (right)
Developed by M. Wehar



Paths and Movement (Part 1) 
(Collisions Algorithm)

● Simulates balls moving around 
and colliding in 2D

● Balls can bounce, combine, or 
break apart based on parameters

● Conservation of momentum

2D Linear Movement (left), Horizontal Only (right)
Developed by O. Khan



Paths and Movement (Part 2) 
(Spirals Algorithm)

● Replicates Archimedean Spiral
● Converts polar coordinates to 

Cartesian coordinates
● Parameters to adjust the spiral 

style (e.g. discretized)

Continuous (left), Discretized (right)
Developed by L. Suresh



Sizes and Repetitions 
(Stickers Algorithm)

● Simple sticker shapes and 
patterns are predesigned

● A combination of sticker patterns 
are repeatedly placed with 
different sizes and colors

Multiple Repeated (left), Single Nested (right)
Developed by M. Wehar



Dataset Builder and Future Directions

● Our Dataset Builder
○ We have an “engine” called the “dataset builder” where logic can be implemented 

to randomly sample parameter values to create varying images

● Two Future Directions 
○ Detaching Parameters from Algorithms: Maybe generic parameters can be 

automatically added to drawing algorithms?  Or, could parameters be used to 
manipulate the drawing like an image filter, but applied to the drawing operations?

○ Selecting Parameter Values Based on User Preferences: Maybe we can sample 
parameters based on a userʼs prior reviews so that we generate images tailored to 
their preferences?



Thank you!

Visit our GitHub repo

Also, see AlgoArt.org (work in progress!)
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