
Creating Variation When Building
Image Generation Datasets
By Jhovani Gallardo Moreno,
Omar Khan, and Michael Wehar

Special thanks to my students and our collaborators E. Brickner, X. Dong, X. Li, C. Liu,
J. Mancini, M. Newman-Toker, R. Oet, V. Sumano, L. Suresh, P. Tone, and A. Zhang.

Image Generators

● We are investigating procedural image generation
● Possible examples include:

○ Creating a pattern or artwork based on a predefined
algorithm or a set of rules

○ Visualizing a diagram based on a data file
○ Displaying a scene based on predefined models

● Possible use cases: Art, Video Games, Design, Marketing, etc

AlgoArt Platform

● Goal: Build bridges between computing and art. Offer a low barrier of
entry to create procedurally generated art and graphics.

● Web-based Platform consisting:
○ Open Source Creator Studio (on GitHub)
○ Digital Gallery including user reviews and feedback

● Drawing algorithms are written in JavaScript (JS)
○ Every algorithm follows a framework:

■ Methods for initialize, start, pause, reset, drawOneStep
■ Has a params JS file for customization

https://github.com/Algorithmically-Generated-Artwork/Drawing-Program

Our Image Data Set

● We generated images using our platform AlgoArt.org
● Developed 15 different drawings algorithms which we used to

create 8,000+ unique images
● Received 23,000+ comparison-based reviews
● We hope to expand to more comprehensive reviews in the

future to better analyze and understand our dataset

https://algoart.org

Geometric Patterns by M. Wehar

70’s Funk by A. Zhang and M. Wehar

How Do We Incorporate Variation?

● Drawing Algorithms
○ Each algorithm has its own parameters file
○ The parameters manipulate the drawing process
○ Our platform loads the parameters file initially, but the user can

modify the params interactively through the UI
● DEMO (Creator Studio)

https://github.com/Algorithmically-Generated-Artwork/Drawing-Program

Defining Parameters to Create Variation

● Each algorithm was designed with its own set of parameters

● Although some parameters are very unique to the kind of drawing process,
there are generic parameters that apply to most of our drawing algorithms

● Generic Parameter Categories:
○ Colors, Palettes, and Gradients
○ Angles and Uniformity
○ Paths and Movement
○ Sizes and Repetitions

Colors, Palettes, and
Gradients (Part 1)
(Geometric Patterns Algorithm)

● Select a starting point
● Randomly sample neighboring

points to possibly move to next
● Select one point to move to and

connect it together with a line

Random Colors (left), Linear Gradient (right)
Developed by M. Wehar

Colors, Palettes, and
Gradients (Part 2)
(Overlapping Tiles Algorithm)

● Draws a series of grids of tiles on
top of each other

● As the tiles layer on top of each
other, they blend together
creating intricate patterns

Random Colors (left), Palette (right)
Developed by M. Wehar

Angles and Uniformity (Part 1)
(Constellations Algorithm)

● Builds structures that resemble
constellations in the night sky

● Structures are made through a
step-by-step process of selecting
points and connecting them to the
existing structures

Random Angles (left), Right Angles (right)
Developed by J. Gallardo Moreno

Angles and Uniformity (Part 2)
(Trees Algorithm)

● Start with a root node
● Expand outward one step at a time

creating many branches
● Trees can resemble real-life or look

more artificial depending on
parameter choices

Random Angles (left), Repeated Angles (right)
Developed by M. Wehar

Paths and Movement (Part 1)
(Collisions Algorithm)

● Simulates balls moving around
and colliding in 2D

● Balls can bounce, combine, or
break apart based on parameters

● Conservation of momentum

2D Linear Movement (left), Horizontal Only (right)
Developed by O. Khan

Paths and Movement (Part 2)
(Spirals Algorithm)

● Replicates Archimedean Spiral
● Converts polar coordinates to

Cartesian coordinates
● Parameters to adjust the spiral

style (e.g. discretized)

Continuous (left), Discretized (right)
Developed by L. Suresh

Sizes and Repetitions
(Stickers Algorithm)

● Simple sticker shapes and
patterns are predesigned

● A combination of sticker patterns
are repeatedly placed with
different sizes and colors

Multiple Repeated (left), Single Nested (right)
Developed by M. Wehar

Dataset Builder and Future Directions

● Our Dataset Builder
○ We have an “engine” called the “dataset builder” where logic can be implemented

to randomly sample parameter values to create varying images

● Two Future Directions
○ Detaching Parameters from Algorithms: Maybe generic parameters can be

automatically added to drawing algorithms? Or, could parameters be used to
manipulate the drawing like an image filter, but applied to the drawing operations?

○ Selecting Parameter Values Based on User Preferences: Maybe we can sample
parameters based on a userʼs prior reviews so that we generate images tailored to
their preferences?

Thank you!

Visit our GitHub repo

Also, see AlgoArt.org (work in progress!)

We acknowledge support for this work from the Swarthmore
College Research and Academic Division Funds.

https://github.com/Algorithmically-Generated-Artwork/Drawing-Program
https://algoart.org

