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Abstract

We introduce a Π1 set S for which Gödel’s Second Incompleteness Theorem

fails. In particular, we show ZF ` Con(ZF + Con(ZF))→ Con(S) ∧ PfS(Con(S)).

Then, we carefully analyze the relationship between PfS(x) and PfS(PfS(x)) in

order to show ZF ` Con(ZF + Con(ZF))→ ∃x [ PfS(x) ∧ ¬ PfS(PfS(x)) ].

1 Preliminaries

Definition 1.1. Let G denote the set of Gödel numbers for well-formed formulas of the

first order system for Zermelo-Fraenkel Set Theory.

Definition 1.2. Let ZF ⊆ G denote the set of Gödel numbers for the standard axioms

of Zermelo-Fraenkel Set Theory.

Definition 1.3. For all A ⊆ G and pXq ∈ G, let PfA(pXq) express that there is a proof

of the well-formed formula represented by pXq from the set of formulas represented by

members of A. For the remainder of the paper, we will omit the corner brackets and

write PfA(X) to improve readability.

We will take for granted that Pf can be recursively defined within the first order

system for Zermelo-Fraenkel Set Theory. In addition, at the top level we write ZF ` W
to express that one could present a formal proof of the well-formed formula W using

the first order system for Zermelo-Fraenkel Set Theory.

Definition 1.4. Let Con(A) abbreviate ¬ PfA(0 = 1).
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We will leave the following propositions as exercises for the reader.

Proposition 1.1. ZF ` ∀A,B [A ⊆ B → ∀x [ PfA(x)→ PfB(x) ] ].

Proposition 1.2. ZF ` ∀A,B [A ⊆ B ∧ Con(B)→ Con(A) ].

Proposition 1.3. ZF ` ∀A ∀x [Con(A) ∧ PfA(x)→ Con(A+ x) ].

Proposition 1.4. ZF ` ∀A [∃x PfA(¬x ∧ x)↔ ∀x PfA(x) ].

In addition, we will make use of the following well-known theorems.

Deduction Theorem. ZF ` ∀A ∀x, y [ PfA+x(y)↔ PfA(x→ y) ].

Diagonal Lemma. For every formula p(x), there exists a sentence ψ ∈ G such that

ZF ` ψ ↔ p(pψq).

Gödel’s Second Incompleteness Theorem. Let a Σ1 formula φ(x) be given. Let T

denote the set associated with φ(x). If ZF ` ZF ⊆ T ⊆ G, then

ZF ` PfT (Con(T ))→ ¬Con(T ).

The requirement on T being defined by a Σ1 formula φ(x) is significant. It is

necessary that φ(x) is embedded in the proof. See Appendix 4.1 for more details.

2 Gödel’s Theorem Fails

Consider the following extension1 of ZF:

S :=

ZF + Con(ZF) if Con(ZF + Con(ZF))

ZF otherwise.

S is Π1 because there is a program that enumerates the complement. This follows

because ZF is decidable and we can determine if Con(ZF) /∈ S by searching for a proof

of 0 = 1 with axioms from ZF + Con(ZF).

If one could prove that Con(ZF) implies Con(ZF+Con(ZF)), then ZF proves its own

inconsistency. However, we will prove in the following that Con(ZF) implies Con(S).

1Formally, one could define S using pairing, comprehension, and union.
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Lemma 2.1. ZF ` Con(S) ↔ Con(ZF).

Proof. The claim follows from the following three statements using the method of

proof by cases.

a) ZF ` S = ZF + Con(ZF)→ [Con(S)↔ Con(ZF) ]

b) ZF ` S = ZF→ [Con(S)↔ Con(ZF) ]

c) ZF ` S = ZF + Con(ZF) ∨ S = ZF.

First, we show a.

S = ZF + Con(ZF) ⇒ Con(ZF + Con(ZF)) (1)

⇒ Con(S) ∧ Con(ZF) (2)

⇒ Con(S)↔ Con(ZF). (3)

(1) follows from the definition of S.

(2) follows from proposition 1.2 because ZF ⊆ S ⊆ ZF + Con(ZF).

(3) follows from logical axioms.

Lastly, b follows from the axioms for equality and c follows from the definition of

S and logical axioms. 2

Theorem 2.1. ZF ` Con(ZF + Con(ZF))→ Con(S) ∧ PfS(Con(S)).

Proof. First, by proposition 1.2, we have ZF ` Con(ZF + Con(ZF)) → Con(S)

because S ⊆ ZF + Con(ZF). Next, we show ZF ` Con(ZF + Con(ZF))→ PfS(Con(S)).

Con(ZF + Con(ZF)) ⇒ S = ZF + Con(ZF) (4)

⇒ PfS(Con(ZF)) (5)

⇒ PfS(Con(S)). (6)

(4) follows from the definition of S.

(5) follows because Con(ZF) ∈ S.

(6) One can use the proof of lemma 2.1 to show ZF ` PfZF(Con(S)↔ Con(ZF)). Since

ZF ⊆ S, we can apply proposition 1.1 to get ZF ` PfS(Con(S)↔ Con(ZF)). 2
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3 Incompatible Proof Levels

We introduced a set S whose members depend on a property that is potentially

independent of ZF. In particular, Con(ZF) ∈ S if and only if Con(ZF + Con(ZF)). We

will show that if Con(ZF) ∈ S, then S has incompatible proof levels, that is S proves

the sentence Con(S), but does not prove that it proves Con(S).

Lemma 3.1. ZF ` Con(S) ∧ PfS(Con(S))→ Con(ZF + Con(ZF)).

Proof.

Con(S) ∧ PfS(Con(S)) ⇒ Con(S) ∧ PfS(Con(ZF)) (7)

⇒ Con(S + Con(ZF)) (8)

⇒ Con(ZF + Con(ZF)). (9)

(7) One can use the proof of lemma 2.1 to show ZF ` PfZF(Con(S)↔ Con(ZF)). Since

ZF ⊆ S, we can apply proposition 1.1 to get ZF ` PfS(Con(S)↔ Con(ZF)).

(8) follows from proposition 1.3.

(9) follows because S + Con(ZF) = ZF + Con(ZF). 2

Theorem 3.1. ZF ` Con(ZF + Con(ZF))→ ¬ PfS(PfS(Con(S))).

Proof.

Con(ZF + Con(ZF)) ⇒ ¬ PfZF+Con(ZF)(Con(ZF + Con(ZF))) (10)

⇒ ¬ PfS(Con(ZF + Con(ZF))) (11)

⇒ ¬ PfS(Con(S) ∧ PfS(Con(S))) (12)

⇒ ¬ PfS(PfS(Con(S))). (13)

(10) follows from Gödel’s Second Incompleteness Theorem.

(11) follows from proposition 1.1 because S ⊆ ZF + Con(ZF).

(12) One can use the proof of lemma 3.1 to show

ZF ` PfZF(Con(S) ∧ PfS(Con(S))→ Con(ZF + Con(ZF))).

Since ZF ⊆ S, we can apply proposition 1.1 to get

ZF ` PfS(Con(S) ∧ PfS(Con(S))→ Con(ZF + Con(ZF))).
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(13) follows from theorem 2.1 because ZF ` Con(ZF + Con(ZF))→ PfS(Con(S)). 2

Corollary 3.1. ZF ` Con(ZF + Con(ZF))→ ∃x [ PfS(x) ∧ ¬ PfS(PfS(x)) ].

Corollary 3.2. ZF proves that the following are equivalent:

(1) ¬Con(ZF + Con(ZF))

(2) PfZF(¬Con(ZF))

(3) PfS(¬Con(S))

(4) PfS(PfS(Con(S))).

4 Appendix

4.1 Gödel’s Second Incompleteness Theorem

Gödel’s Theorem is a theorem scheme. If a Σ1 formula φ(x) is provided, then one

could carry out the proof. The assumption that φ(x) is Σ1 is significant. Since φ(x)

is Σ1, T is computably enumerable and one could write a program p that enumerates

codings of T -proofs i.e. proofs whose axioms are from T . Therefore, if t is a coding

of a T -proof, then there is a computation for p that accepts t. The existence of a

computation implies the existence of a proof that t is in fact a T -proof. Since t is an

arbitrary T -proof, one could formalize the preceding to get

ZF ` ∀x [ PfT (x)→ PfT (PfT (x)) ]

which is needed to carry out the proof that T proves its own consistency implies T is

inconsistent.

There is a terrible subtlety in the preceding discussion. We require that a Σ1 formula

φ(x) is provided. In particular, we cannot generalize over all Σ1 sets T . Pick two distinct

Σ1 sets Y1 and Y2. Consider the following set

W :=

Y1 if CH

Y2 otherwise.

If CH denotes the Continuum Hypothesis, then whether W is associated with Y1’s

formula or Y2’s formula is independent of ZF. Therefore, we cannot provide a Σ1 formula
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for W . Formally, Gödel’s Theorem will not apply to W because we need to use the Σ1

formula to prove “that t is in fact a T -proof”, as stated above.

4.2 Known Results for Complete Theories

It is worth noting that complete extensions of ZF are known to have properties similar

to S. In particular, if one defines a complete extension T of ZF, then we observe that

ZF ` Con(T + Con(T )) → Con(T ) ∧ PfT (Con(T )) and using the Diagonal Lemma can

show ZF ` Con(T + Con(T ))→ ∃x [ PfT (x) ∧ ¬ PfT (PfT (x)) ].
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