
Finding the Smallest Turing Machine Using k log(n)

Non-deterministic Guesses

Michael Wehar

University at Buffalo

mwehar@buffalo.edu

May 4, 2014

Consider that we are given a number m and two disjoint finite sets of strings A and

R. Does there exist a DFA with at most m states that accepts the strings in A and

rejects the string in R? We refer to this problem as the inference problem for DFA’s and

denote it by INFDFA. It was shown by E. Mark Gold in [4] that INFDFA is NP-hard.

To the best of my knowledge, it is not known whether INFDFA remains NP-Hard when

restricting A and R such that both sets contain exactly one string. We refer to this

problem as separating two words and denote it by S2WDFA. Separating two words is

related to constructing a minimum DFA that accepts one string and rejects another.

From a combinatorial point of view, this problem has been well studied and several

upper bounds have been given for the size of a minimum DFA in terms of the length of

the string to accept and the string to reject [8]. If the strings have length at most n, it

is an open problem to resolve whether a minimum DFA always has O(log(n)) states.

Let’s consider the separating two words problem for computational models with

memory. Consider that we are given a number m and two bit strings s1 and s2. Does

there exist a 2PDA with at most m states that accepts s1 and rejects s2? We denote

this problem by S2W2PDA. It was shown that if s1 and s2 have length at most n,

then there exists a 2PDA with O(log(n)) states that accepts s1 and rejects s2 [3].

Notice that there are at most 2O(log(n) log log(n)) 2PDA’s with log(n) states. Therefore,

S2W2PDA can be deterministically solved in 2O(log(n) log log(n)) time by brute force search.

One can non-deterministically solve S2W2PDA in nO(1) time using O(log(n) log log(n))

non-deterministic guesses. We will improve on this result by showing that there exists

a Turing machine with at most O(log(n)
log log(n)

) states that accepts s1 and rejects s2.

1

2 Michael Wehar

We will now consider the inference problem for clocked Turing machines introduced

by Manuel Blum in [1]. Consider that we are given a number m and a finite set T

of triples of the form (s, b, t) where s is a bit string, b is a single bit, and t is number

represented in unary. A Turing machine M is said to match a triple (s, b, t) if M halts

on input s in at most t steps and M accepts s if and only if b = 1. Does there exist

a Turing machine with at most m states that matches all triples in T? We denote

this problem by INFCTM. Without too much effort, one can show INFCTM ∈ NP. To

the best of my knowledge, it is not known if INFCTM is NP-Hard. We will show that

if there exists a Turing machine that matches all triples in T and T has size k, then

there is a Turing machine that matches all triples in T with at most k log(n)
log log(n)

states.

Consider the fixed parameter problem where T contains at most k triples. We denote

this problem by k-INFCTM . It follows that k-INFCTM can be deterministically solved

in O(nk) time and k-INFCTM can be non-deterministically solved in nO(1) time using

O(k log(n)) non-deterministic guesses.

If we restrict ourselves to only two triples, we get 2-INFCTM which we will also

denote by S2WCTM. Notice that S2WCTM ∈ P, but we don’t know if S2WDFA is

solvable in polynomial time. One might think that S2WDFA is easier because DFA’s

are computationally much simpler than Turing machines. However, this may not be

the case because there always exists a small Turing machine that separates two given

strings. Therefore, we need only search through polynomially many Turing machines

to find a smallest one that matches both triples.

From a computational complexity point of view, resolving whether the k-INFCTM

problems are deterministically solvable in nO(1) time could shed light on the relationship

between deterministic time and non-deterministic time. Consider the following com-

plexity class for an arbitrary pair of functions f(n) and g(n). Let NTIGU(f(n), g(n))

denote the set of problems solvable by a non-deterministic Turing machine in at most

f(n) time using at most g(n) non-deterministic guesses. We show that k-INFCTM ∈
NTIGU(nO(1), k log(n)) and k-INFCTM ∈ DTIME(nk). If it happens to be the case

that k-INFCTM /∈ DTIME(nO(1)), then there is an immense gap between P and NP.

In particular, for every g(n) = ω(log(n)), NTIGU(poly(n), g(n)) * P. However, one

might be able to show that P 6= NP implies that such a gap exists.

For an arbitrary function g(n), what can we say about the relationship between

NTIGU(poly(n), g(n)) and NTISP(poly(n), g(n))? If P = NL, then one can space effi-

ciently simulate polynomial time verifiers to get NTIGU(poly(n), g(n)) ⊆ NTISP(poly(n), g(n)).

Also, it’s worth mentioning that although we do not show that k-INFCTM is com-

Finding the Smallest Turing Machine Using k log(n) Non-deterministic Guesses 3

plete for NTIGU(poly(n), O(log(n))), there exist natural problems that are complete for

NTISP(poly(n), O(log(n))). In particular, for any fixed k, intersection non-emptiness

for k acyclic DFA’s, those without directed cycles, is complete for NTISP(poly(n), O(log(n))).

Acknowledgments

I greatly appreciate the help and suggestions that I received from Joseph Swernofsky. In

addition, I would like to thank Manuel Blum for introducing me to inductive inference

and for the many discussions that we had on the subject.

References

[1] Manuel Blum. Timed Inductive Inference. Unpublished, 2012.

[2] James Currie, Holger Petersen, John Michael Robson, and Jeffrey Shallit. Sepa-

rating words with small grammars. J. Automata, Languages, and Combinatorics,

4:101–110, 1999.

[3] Erik D. Demaine, Sarah Eisenstat, Jeffrey Shallit, and David A. Wilson. Remarks

on separating words. In Markus Holzer, Martin Kutrib, and Giovanni Pighizzini,

editors, Descriptional Complexity of Formal Systems, volume 6808 of Lecture Notes

in Computer Science, pages 147–157. Springer Berlin Heidelberg, 2011.

[4] E Mark Gold. Complexity of automaton identification from given data. Information

and Control, 37(3):302 – 320, 1978.

[5] Gregor Gramlich and Ralf Herrmann. Learning unary automata. Presented at

Descriptional Complexity of Formal Systems, 2005.

[6] Leonard Pitt and Manfred K. Warmuth. The minimum consistent dfa problem

cannot be approximated within any polynomial. J. ACM, 40(1):95–142, January

1993.

[7] J. M. Robson. Separating words with machines and groups. RAIRO - Theoretical

Informatics and Applications - Informatique Thorique et Applications, 30(1):81–86,

1996.

[8] Jeffrey Shallit. The separating words problem. Presented at McMaster University

optimization seminar, 2010.

