Technical Report: Enumerating Theorems

Michael Wehar
University at Buffalo
mwehar@buffalo.edu

May 22, 2015

Abstract

Using a simple unification based algorithm, we explored a technique for
enumerating sets of propositional theorems. Then, we tested a small set of
seemingly hard theorems on three different theorem provers that were im-
plemented by Christian Gottschall. The results suggest that no one prover
is better than the rest which justifies using our larger sets of theorems as an
informal benchmark for propositional theorem provers. Finally, we imple-
mented a propositional theorem enumerator in Prolog and compared it with
our previous implementation in Java.

1 Prior Work

1.1 The Logic System

Consider a Hilbert style system of propositional calculus with connectives not ()
and implication (—) and the inference rule modus ponens. There are many valid
axiomatizations of this system. For example, you could use Frege’s axioms:

1) A= (B— A)

2) (A-(B—-0C)—=(A—B)—= (A—=0))

3) (A— B)— (=B — —A)

4) —A—= A

5) A— A

Or, you could simply use a single axiom such as Lukasiewicz and Tarski’s axiom:

1) (A= (B—=A4)—=((-C—=(D—=-E)—=((C—
(D—F)—(F—D)—=(E—=F))) —G)—(H—G)
Just looking at these two axiomatizations of propositional calculus, it’s not

clear that they are equivalent. However, using automated techniques I was able to
show that nearly all of the axiomatizations found in [§] are equivalent.

1

2 Michael Wehar

1.2 Theorem Enumeration

The naive way of enumerating theorems is to enumerate proofs. However, this is
very inefficient because most strings of length n don’t represent proofs. Even if
you had an efficient way of enumerating proofs, it’s better to dynamically prove
new theorems from the theorems you already have rather than reconstructing new
proofs from scratch.

We explore a method using the unification algorithm. Given two schema X
and Y — Z, if X matches the subschema Y, then there is a most general theorem
you can prove in one step. Find the minimum substitution for X and Y using
unification, then apply this substitution to Z. The result is the most general
theorem you can get in one step.

Our algorithm keeps a minimal list that represents all theorems you can prove
in n steps and then uses the unification approach to generate a minimal list for
n + 1 steps and so on.

The algorithm was implemented in Java. More detail on prior work and results
can be found in [7]. In addition, a related approach was applied to enumerating all
Turing machine tape configurations that can be obtained by compressed one-tape
Turing machines with at most n states in n steps from a blank tape input.

2 Present Work

2.1 Theorem Provers

While pursuing an independent study, I encountered many proof procedures in [2].
Further, I went on to investigate theorem provers and their performance such as
the leanCoP_small prover [5]. The performance results and comparisons led me
to run my own performance tests. I made significant adjustments to the theorem
enumeration system that I previously developed in Java in order to generate and
output a large list of propositional theorems that are sorted by complexity. The
adjustments consisted of: (1) Adding randomness into the system to generate theo-
rems of varying complexity, (2) picking an axiomatization that generates theorems
with high complexity, and (3) refining parameters to yield the best results.
Randomness was simply added into the system by flipping a weighted coin to
determine whether or not we would apply the unification approach to two given
theorem schema. We needed to introduce randomness because without it, we would
generate so many theorems of low complexity that it would take days before gen-
erating theorems of high complexity. Further, it appeared that the Lukasiewicz
and Tarski’s axiomatization mentioned in the previous section generated theorems
of the highest complexity. I measured complexity by the number of variables and
the depth of the shortest proof that generated the theorem. The parameters that
mattered the most were the weight of the weighted coin and the number of the-
orems we would generate before halting. For example, during one of the better
simulations, the weight was 0.2 and the number of theorems was 50,000.

Technical Report: Enumerating Theorems 3

I ran small tests on three basic online theorem provers by Christian Gottschall
[3]. The three provers are called: Advanced Tableau, Basic Tableau, and Benson
Mates. In my submission, I included ten seemingly complex instances that I ran the
three provers on. The performance was measured in seconds. I found that at least
one of the provers could handle nearly all of the instances. However, there were
many instances that caused the Advanced Tableau prover to time-out. The results
of the small tests suggest that (1) the Advanced Tableau prover is the slowest, (2)
the Basic Tableau prover is the most reliable, (3) the Benson Mates can be very
fast on some instances and very slow other instances, and (4) no prover always
performs better than the others.

2.2 Prolog and Counting Theorems

In addition, we implemented a simplified version of the Java theorem enumerator
in Prolog. The Prolog implementation is only a few lines while the Java program
is over a thousand lines of code. See the basic implementation below.

1) isThm(Axiom, 0).
2) isThm(B,n+1) :- isThm(B,n).
3) isThm(B,n+1) :- isThm(impl(A,B), n), isThm(A, n).

Through some informal testing it appears that the Prolog implementation runs
roughly four times as fast as the central unification and enumeration component
of the Java implementation. Although the Prolog implementation seems favor-
able, the basic implementation doesn’t condense the list of theorems so it’s quite
inefficient when you make a query such as setof (D, isThm(D,7), X). The Java
implementation efficiently condenses the list of theorems and includes other subtle
optimizations that allow one to make such queries yielding results efficiently.

Further, we implemented several more advanced Prolog programs that use
tabling to condense the list of theorems. However, these implementations only
work in XSB Prolog. For example, we could simply add the following line to the
beginning of the basic implementation to enable tabling.

0) :- table isThm/2.

When we ran this example, it appeared to run more efficiently on queries such
as setof (D, isThm(D,n), X) for very small n. However, the XSB system runs
out of memory when n is larger than 5.

Further, we thoroughly tested all implementations on the Lukasiewicz and
Tarski and the Frege axiomatizations that were mentioned in Section 1. We dis-
covered that condensing the list of theorems is essential for yielding meaningful
results. For example, the Lukasiewicz and Tarski axiom yields 2.8 million proofs
of the 19 theorems of depth 5. This means that the basic Prolog implementation
runs out of memory on theorems of depth 5 while the Java implementation can
continue generating theorems up to depth 9. See Figure 1 below.

4 Michael Wehar

tukasiewicz and Tarski -Frege |

Depth Theorems Proofs Theorems Proofs |

0f 1 1 9 54

1 2 2 22 244

2 4 6 89 2654

3 8 42 918 37777

4 13 1799 14976 900000+

S 19] ~2812980 20000+

6 33

7 128

8 1822

9| 25000+

Figure 1: Counting theorems and proofs of the specified depth.

All implementations in XSB Prolog with tabling ran out of memory on small
depths. In particular, our implementations ran out of memory on theorems of
depth 6 for Lukasiewicz and Tarski’s axiom and theorems of depth 2 on Frege’s
axiomatization.

3 Future Work

The small tests that I ran were just preliminary runs to get a feel for the sorts
of comparisons and runtimes I may expect when I start to run my benchmarks
consisting of 50,000+ propositional theorems on high performance theorem provers.
There is a nice platform already set-up at [6] to efficiently compare such provers.
Further, I recently got in contact with Jeffrey Shallit who (with colleagues) has
been successfully applying methods from automata theory to automatedly verify
(or even decide) short yet complex statements in number theory [I]. The prover
that he uses is called Walnut [4]. T look forward to applying the knowledge that I
obtained this semester to future research and collaborations in mathematical logic
and theorem proving.

Acknowledgments.

The core algorithm of the propositional theorem enumerator was made while at
Carnegie Mellon University for undergraduate research under the advisement of
Klaus Sutner. Further collaboration was done with fellow student Joseph Swer-
nofsky. The tests that we discussed in this report were performed at University at
Buffalo for an independent study under the advisement of Jan Chomicki.

Technical Report: Enumerating Theorems 5

References

1]

Chen Fei Du, Hamoon Mousavi, Luke Schaeffer, and Jeffrey Shallit. Decision
algorithms for fibonacci-automatic words, with applications to pattern avoid-
ance. CoRR, abs/1406.0670, 2014.

Melvin Fitting. First-order Logic and Automated Theorem Proving. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1996.

Christian Gottschall. Automated theorem prover for classical predicate logic,
2012. [Online; accessed 12-May-2015].

Hamoon Mousavi. Walnut prover, 2015. [Online; accessed 11-May-2015].

Jens Otten and Wolfgang Bibel. leancop: Lean connection-based theorem prov-
ing. J. Symb. Comput., 36(1-2):139-161, July 2003.

Geoff Sutcliffe and Christian Suttner. The tptp problem library for automated
theorem proving, 2001. [Online; accessed 12-May-2015].

Michael Wehar. Mathematical logic tools and games, 2014. [Online; accessed
12-May-2015].

Wikipedia. List of logic systems, 2014. [Online; accessed 12-May-2015].

	Prior Work
	The Logic System
	Theorem Enumeration

	Present Work
	Theorem Provers
	Prolog and Counting Theorems

	Future Work

