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Abstract
We apply a reduction technique paralleling Chen, Huang, Kanj, and Xia (2006) to show that
if intersection non-emptiness for k tree shaped automata is solvable in no(k) time, then the
exponential time hypothesis (ETH) is false. Then, we apply a reduction technique paralleling
Williams (2005) to show that if intersection non-emptiness for two tree shaped automata is
solvable in O(n2−ε) time, then the strong exponential time hypothesis (SETH) is false. Further,
we introduce a parameterized equivalence between intersection non-emptiness, weighted CNF-
SAT, and the clique problem for hypergraphs.
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1 Introduction

1.1 Background
Consider a boolean formula in conjunctive normal form. We can construct one automaton
for each clause so that a given assignment satisfies all of the clauses if and only if it satisfies
all of the automata. In other words, automata are used to collectively verify that a given
assignment satisfies each of the clauses. In general, automata are effective devices for the
collective verification of constraints. This insight leads us to intersection non-emptiness.

Given a finite list of DFA’s (deterministic finite automata), does there exist a string
that simultaneously satisfies all of the DFA’s? This problem is known as the intersection
non-emptiness problem for DFA’s because it is equivalent to determining if the corresponding
regular languages have a non-empty intersection. Let’s abbreviate this intersection problem
by IED. Further, let n denote the total input size and k denote the number of DFA’s in the
list. When k is fixed, we denote the intersection non-emptiness problem by k-IED.

Although intersection non-emptiness is motivated as a constraint satisfaction problem, it
can also be viewed as a graph reachability problem. In particular, the standard solution for
IED involves searching through a product automaton’s state diagram.1

I Proposition 1. For each k ∈ N, k-IED ∈ DTIME(nO(k)).

1 The Cartesian product construction is a classic construction that is used for showing that regular
languages are closed under intersection [18].
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2 Tree Shaped Finite Automata

Sketch of proof. Let a finite list of DFA’s {Di}i∈[k] be given. We can build a single product
DFA D such that L(D) =

⋂
i∈[k] L(Di). Hence, we reduced k-IED to determining whether

L(D) is non-empty. That is, whether there is a path from the start state to a final state in
D’s state diagram. Then, we proceed by performing a basic graph search such as breadth
first search. Although breadth first search is efficient2, D’s state diagram may be large. If
each DFA in {Di}i∈[k] has at most n states, then in the worst case the product DFA D has
at most nk states. J

The preceding solution leads to a deterministic algorithm that runs in roughly nk time
using nk space. Further, using a non-deterministic approach for graph reachability, we get a
non-deterministic algorithm that runs in nk time using O(k log(n)) space. However, it’s not
known if there are any faster deterministic or non-deterministic algorithms for IED.

There has been a whole history of hardness results for intersection non-emptiness. Kozen
(1977) showed that IED is PSPACE-complete [11]. Next, Kasai and Iwata (1985) showed
that for fixed k, solving k-IED requires Θ(k log(n)) non-deterministic space for Turing
machines with a binary tape alphabet [10]. Then, Lange and Rossmanith (1992) showed that
if we constrain k to be log(n), then IED becomes NSPACE(log2(n))-complete [13]. Finally, a
combination of results from Karakostas, Lipton, and Viglas (2003) and Wehar (2014) showed
that if we can solve k-IED in DTIME(no(k)), then P 6= NL [9, 23]. That is, if for every ε > 0
there exists k sufficiently large such that k-IED ∈ DTIME(nεk), then P 6= NL.

Hardness results have also been shown for a few notable restricted classes of DFA’s.
Consider the class of DFA’s whose state diagrams are acyclic3 (excluding the dead state).
The intersection problem for this class of DFA’s was shown to be NP-complete [19]. Further,
for fixed k, this intersection problem was observed to characterize NTISP(n, k log(n)) [23].
Also, consider the class of DFA’s that have a commutative transition monoid. The intersection
problem for this class of DFA’s was shown to be NP-complete even when the number of final
states is fixed [4].

1.2 Our Contribution

Tree shaped automata make up a restricted class of finite automata. These automata are of
particular interest to us because their elegant structure provides simplistic approaches to
collectively verify constraints.

In this paper, we investigate the intersection non-emptiness problem for tree shaped
automata. In Section 3, paralleling [6] and [24], we apply fine-grained reduction techniques
to reduce boolean satisfiability to intersection non-emptiness. In particular, we show that
(1) if intersection non-emptiness for tree shaped automata is solvable in no(k) time, then
the exponential time hypothesis is false and (2) if intersection non-emptiness for two tree
shaped automata is solvable in O(n2−ε) time, then the strong exponential time hypothesis is
false. Finally, in Section 4, we present parameterized reductions to show that intersection
non-emptiness for k tree shaped automata over an input alphabet [c] is both equivalent to
k-weighted satisfiability for c-CNF formulas and k-clique for c-uniform hypergraphs.

2 A multi-tape Turing machine can carry out the breadth first search in roughly n2k time. A random
access machine can carry out the search in roughly nk time.

3 An acyclic DFA is essentially an oblivious binary decision diagram (as in [1]).



M. Wehar 3

2 Preliminaries

2.1 Tree Shaped Automata
In this section, we introduce tree shaped automata and their basic structural properties.

Finite automata are typically expressed by directed labeled graphs called state diagrams.
When drawn, it is common to compress state diagrams by allowing multi-label transitions.
A multi-label transition consists of a source state, a target state, and a finite set of alphabet
characters. If any one of the characters in the finite set is read, then the automaton can
move from the source state to the target state. When considering state diagrams, we will
assume that all transitions with the same source and target states are compressed to a single
multi-label transition.

An automaton is said to be tree shaped4 if its state diagram (without the dead state)
forms a rooted tree such that (1) the root of the tree is the start state, (2) all transitions are
directed towards the leaves, and (3) there are no loops.

Consider the following example of a tree shaped DFA D1:

q0start

q1

q2

q3

q4

q5

q6

q7 q8

0

1

0

0

1

0,1

0,1 1

Since tree shaped DFA’s don’t contain any loops or directed cycles, they can only accept
finite languages. Notice that D1 accepts the language {0, 11, 000, 001, 1001, 1011}.

A branch is a path from the root to a leaf. For example, the branches of D1 are
{0, 11, 00∗, 10∗1} where an asterisk abbreviates a multi-label 0 or 1 transition. Since the
accepting paths are exactly the branches, we can simply represent any tree shaped automata
by the corresponding set of branches.

2.2 Pruned Product Construction
The Cartesian product construction is a classic construction that is used for showing that
regular languages are closed under intersection [18]. The idea is that given DFA’s D1 and
D2, there exists a product DFA D such that L(D) = D1 ∩D2. For tree shaped DFA’s, we
consider a pruned product construction. Let tree shaped DFA’s D1 and D2 be given.
First, apply the product construction to D1 and D2. Next, prune away the dead branches
and unreachable states to get a tree shaped DFA D such that L(D) = D1 ∩D2.

I Lemma 2. Let tree shaped DFA’s D1 and D2 be given. If D1 has m1 states of height h
and D2 has m2 states of height h, then the pruned product of D1 and D2 is a tree shaped
DFA with at most m1 ·m2 states of height h.

4 A tree shaped DFA is essentially a reduced form of an oblivious binary decision tree. Related concepts
have been explored in [16].
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Sketch of proof. Consider the product of D1 and D2. The reachable states from the
product automaton form a tree. One can show this by arguing that the indegree of any
product state (s1, s2) is at most one because the indegree of s1 in D1 is at most one and the
indegree of s2 in D2 is at most one. Further, one can prune away any branches that don’t
lead to a final state to get a tree shaped DFA. This is the pruned product of D1 and D2.

The pruned product is leveled in the sense that each state has a height relative to the
start state. For a given state (s1, s2) of height h, s1 must be of height h in D1 and s2 must be
of height h in D2. Since there are at most m1 states of height h in D1 and at most m2 states
of height h in D2, there are at most m1 ·m2 states of height h in the pruned product. J

2.3 Non-Deterministic Automata
We’ve seen that any tree shaped automaton can be represented by the corresponding set of
branches. Similarly, every set of branches has a corresponding tree shaped automaton, but
this automaton might not be deterministic.

For example, consider the set of branches {0∗1, ∗0∗, 01}. There is no tree shaped DFA
with these three branches. However, the following is the corresponding tree shaped NFA that
trivially branches out from the start state:

q0start
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In general, there is an exponential blow-up when converting from an NFA to an equivalent
DFA. Similarly, there is an exponential blow-up when converting from a tree shaped NFA to
an equivalent tree shaped DFA.

I Proposition 3. There exists a class of languages {Ln}n∈N such that for each n ∈ N, Ln is
accepted by some tree shaped NFA with at most 2n2 + 1 states. However, the smallest DFA
that accepts Ln has at least 2n states.

Sketch of proof. For each n ∈ N, consider the following language:

Ln = { x · y | x, y ∈ {0, 1}n and ∃ i ∈ [n] such that xi = yi}.

In other words, Ln is the set of strings of length 2n where the bit at position i is the same as
the bit at position n+ i for some i ∈ [n]. We can build a tree shaped NFA for Ln where each
branch represents one of n possible values for i. This NFA will have n branches of length 2n
each. As a result, the NFA will have size at most 2n2 + 1.

For each string x of length n, consider the set Sx such that y ∈ Sx if and only if x ·y ∈ Ln.
Notice that the only string of length n that is not a member of Sx is the string that differs
from x at every bit position. Therefore, every string x of length n defines a unique set Sx. It
follows that there are 2n distinct sets Sx.

Now, consider a DFA that accepts Ln. This DFA must contain at least one state for each
possible set Sx. As a result, the DFA must have at least 2n states. J
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2.4 Sparsely Balanced Automata
A tree shaped automaton is said to be sparsely balanced if (1) the final states are exactly
the leaves and (2) every branch has the same length. As a result, all strings accepted by
a sparsely balanced tree shaped automaton have the same length. We call this length the
height of the automaton and denote the height by h.

It’s worth noticing that every sparsely balanced tree shaped automaton over a binary
input alphabet has a corresponding disjunctive normal form (DNF) formula such that the
strings accepted by the automaton are exactly the satisfying assignments for the formula.

Let a sparsely balanced tree shaped automaton D of height h with branches {bi}i∈[m]
be given. The corresponding DNF formula φ has h variables and is expressed as ∨i∈[m]Ci
where each Ci is just a conjunction of literals. Further, each level of D is represented by a
variable of φ and each branch bi is represented by a conjunction of literals Ci satisfying that
for each variable vj , either (1) Ci contains vj and the jth position of bi has a 0 transition,
(2) Ci contains v̄j and the jth position of bi has a 1 transition, or (3) Ci doesn’t contain vj
or v̄j and the jth position of bi contains a multi-label 0 or 1 transition.

Although many of the tree shaped automata that appear in our later constructions will
be sparsely balanced, we will not specifically focus on the sparsely balanced property.

3 Fine-Grained Complexity

3.1 NP-Completeness
We present reductions from boolean satisfiabilty to intersection non-emptiness. In particular,
we focus on intersection non-emptiness for tree shaped DFA’s over a binary input alphabet.
That is, given a finite list of tree shaped DFA’s over a binary input alphabet, does there
exist a bit string that simultaneously satisfies all of the DFA’s? We abbreviate this problem
by IET D.

I Proposition 4. IET D is NP-complete. Moreover, the problem is still NP-complete when
each DFA has at most 3 branches.

Proof. A witness is any string that is in the intersection. Since the witness length is
linear in the number of states and verification just consists of running the DFA’s, IET D is in
NP.

Hardness follows by a reduction from 3-SAT similar to that found in [19]. For a given
3-SAT formula φ =

∧
i∈[m] Ci with n variables and m clauses, we construct a tree shaped

DFA for each clause. In particular, for each i ∈ [m], we build a DFA Di that checks if a given
bit assignment satisfies Ci. Each DFA has three branches where each branch represents a
possible way for the clause to be satisfied.

Branch 1: first literal is true.
Branch 2: first literal is false and second is true.
Branch 3: first and second literals are false and third is true.

The construction yields m tree shaped DFA’s each with O(n) states. The DFA’s all have
at most 3 branches and collectively verify that a given bit string represents a satisfying
assignment of φ. J

It’s worth noting that if each DFA has at most two branches, then the intersection
problem reduces to 2-SAT and therefore is solvable in polynomial time.
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3.2 ETH-Hardness
The exponential time hypothesis (ETH) states that 3-SAT is not solvable in 2o(n) time. It
has been shown that k-clique is hard for ETH in the sense that if k-clique ∈ DTIME(no(k)),
then ETH is false [6]. Similarly, we will show that the intersection non-emptiness problem
for k tree shaped DFA’s over a binary input alphabet is ETH-hard. We abbreviate this
intersection problem by k-IET D.

When discussing SAT problems, we use n to denote the number of variables and m to
denote the number of clauses. The next lemma follows implicitly from the Sparsification
Lemma [8]. Sparsification allows one to convert a single SAT instance to many SAT instances
with fewer clauses.

I Lemma 5. If 3-SAT is solvable in 2o(m) time, then ETH is false.

Sketch of proof. Suppose that 3-SAT is solvable in 2o(m) time where m represents the
number of clauses. That is, for every ε > 0 we can solve 3-SAT in O(2εm) time. By the
Sparsification Lemma [8], it follows that for every ε > 0 we can solve 3-SAT in O(2εn) time
where n denotes the number of variables. Further, by definition, we get that ETH is false. J

I Theorem 6. If k-IET D is solvable in no(k) time, then ETH is false.

Proof. Suppose that k-IET D is solvable in no(k) time. That is, for every ε > 0 there
exists k sufficiently large such k-IET D ∈ DTIME(nεk). Now, we show that 3-SAT is solvable
in 2o(m) time.

Let ε > 0 be given. Let a 3-CNF formula φ with n variables and m clauses be given.
Using the construction from the proof of Proposition 4, we can build m tree shaped DFA’s
of height n with 3 branches each such that φ is satisfiable if and only if the DFA’s have a
non-empty intersection.

By the assumption, we can pick k ∈ N such that k-IET D ∈ DTIME(n
εk

log2(3) ). Break the
m DFA’s up into k groups of mk each. Take the pruned product of all of the DFA’s in each
of the groups to get k larger DFA’s. By Lemma 2, each of the pruned product DFA’s is a
tree shaped DFA with at most 3mk states of height n. Further, since each pruned product
forms a tree of height n, each pruned product has at most n · 3mk states total. Applying the
efficient algorithm for k-IET D, we can solve the intersection problem for these k DFA’s in
O(n

εk
log2(3) · 2εm) time. Therefore, 3-SAT is solvable in O(n

εk
log2(3) · 2εm) time.

Since ε was arbitrary, it follows that 3-SAT is solvable in 2o(m) time. By Lemma 5, it
follows that ETH is false. J

3.3 SETH-Hardness
We denote by CNF-SAT the classic satisfiability problem for formulas in conjunctive normal
form. Further, we denote by c-SAT the satisfiability problem for formulas in conjunctive
normal form with at most c literals per clause.

The strong exponential time hypothesis (SETH) states that there is no ε > 0 such that
for every c, we have c-SAT is solvable in O(2(1−ε)n) time where n denotes the number of
variables. It has been shown that the orthogonal vectors problem is hard for SETH in the
sense that if it is solvable in O(n2−ε) time, then SETH is false [24, 25]. Similarly, we will
show that intersection non-emptiness for two tree shaped DFA’s is SETH-hard.

I Theorem 7. If 2-IET D is solvable in O(n2−ε) time, then SETH is false.
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Proof. We define a special kind of reduction from CNF-SAT to 2-IET D. Let a CNF
formula φ with n variables and m clauses be given. We construct DFA’s D1 and D2 with
(m+ n) · 2n2 states each such that φ is satisfiable if and only if L(D1) ∩ L(D2) is non-empty.

A variable assignment for φ is a bit string of length n. Consider an assignment α. We
can break α up into two blocks α1 and α2 of n2 bits each. Additionally, we consider a clause
assignment for α. A clause assignment is a bit string of length m. We say that a clause
assignment is valid for α if for each clause ci of φ, at least one of the following is satisfied:

the ith bit of the clause assignment is 0 and α1 forces ci to be satisfied.
the ith bit of the clause assignment is 1 and α2 forces ci to be satisfied.

The DFA’s D1 and D2 will read as input a variable assignment α consisting of blocks
α1 and α2 followed by a corresponding clause assignment β. The DFA D1 branches while
reading α1 and ignores α2. Similarly, D2 ignores α1 and branches while reading α2. Then,
D1 reads the clause assignment β and verifies that for each i, if α1 doesn’t force clause ci to
be satisfied, then β has a 1 at the ith position. Similarly, D2 reads the clause assignment β
and verifies that for each i, if α2 doesn’t force clause ci to be satisfied, then β has a 0 at the
ith position.

Together, D1 and D2 collectively verify that for each clause ci, either α1 or α2 forces ci
to be satisfied. Therefore, D1 and D2 collectively verify that β is valid for α. Further, φ is
satisfiable if and only if there is a variable assignment α and clause assignment β such that
β is valid for α. We conclude that φ is satisfiable if and only if D1 and D2 have a non-empty
intersection. J

It has been shown that for every fixed k, k-dominating set is hard for SETH in the sense
that if it is solvable in O(nk−ε) time for some ε > 0 and k ≥ 3, then SETH is false [17].
Similarly, we will show that intersection non-emptiness for k tree shaped DFA’s over the
input alphabet [k] is SETH-hard. We abbreviate this intersection problem by (k, k)-IET D.

I Theorem 8. If there exists k such that (k, k)-IET D is solvable in O(nk−ε) time, then
SETH is false.

Proof. In a similar manner as Theorem 7, we reduce CNF-SAT to the intersection
problem. Let a natural number k be given. Let a CNF formula φ with n variables and m
clauses be given. We construct DFA’s {Di}i∈[k] with (m+ n) · 2nk states each such that φ is
satisfiable if and only if

⋂
i∈[k] L(Di) is non-empty.

Each variable assignment α for φ is broken up into k blocks {αi}i∈[k] of nk bits each. A
clause assignment for α is a string of m characters over the alphabet [k]. A clause assignment
is valid for α if for each clause, if the corresponding character is i ∈ [k], then αi forces the
clause to be satisfied.

The DFA’s each read in an assignment α followed by a clause assignment β. The DFA Di

verifies that if the ith block doesn’t satisfy a clause, then the corresponding clause assignment
character is not i. Collectively, the DFA’s verify that β is valid for α. As a result, we get
that φ is satisfiable if and only if the DFA’s have a non-empty intersection. J

3.4 c-SAT Hardness
We write (c, k)-IET D to denote intersection non-emptiness for k tree shaped DFA’s over the
input alphabet [c]. As the parameter c gets larger, the intersection problem gets harder. In
particular, we show that for each c, faster algorithms for the intersection problem over the
input alphabet [c] implies faster algorithms for c-SAT.
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I Theorem 9. If (c, k)-IET D is solvable in O(nδ) time, then c-SAT is solvable in O(2 δnk )
time.

Sketch of proof. In Theorem 8, it was shown how to reduce CNF-SAT to (k, k)-IEBT .
If we instead consider c-SAT, we can do a similar reduction where the DFA’s are over the
alphabet [c]. Since each clause has at most c literals, at most c assignment blocks are relevant
for determining if that clause is satisfied. For each clause, a character from [c] will be used
to represent which of the relevant blocks forces the clause to be satisfied. J

4 Parameterized Reductions

4.1 Definitions
We present parameterized reductions between several related problems. All of these reductions
will be specific kinds of fpt-reductions that we refer to as LBL-reductions.

Any parameterized problem can be represented by an infinite family of fixed levels. Let
families {k-A}k∈N and {k-B}k∈N be given. We say that k-A is fpt-reducible to k-B if there
exists a family of reduction functions {rk}k∈N and functions f , g such that (1) for all k ∈ N
and all instances x of k-A, we have x ∈ k-A ⇐⇒ rk(x) ∈ f(k)-B, and (2) there exists a
constant c such that for all k ∈ N, rk is computable in g(k) · nc time. Further, we say that
the ftp-reduction is uniform if the family of reduction functions is effectively computable.
In parameterized complexity, uniform ftp-reduction is the most standard and commonly used
notion of reduction [7].

An LBL-reduction is a special kind of fpt-reduction such that for all k ∈ N, f(k) = k

[20]. This means that the reductions exactly preserve the parameter5. Further, we say that
the instance blow-up of an LBL-reduction is O(nd) if for every k, an instance x of size n
is reduced to an instance rk(x) of size at most O(nd).

4.2 Clique
Consider the intersection non-emptiness problem for k tree shaped NFA’s over a binary input
alphabet. We abbreviate this problem by k-IET N .

It has been shown that by using fast matrix multiplication, we can solve k-clique in
O(n0.792k) time for graphs with n vertices and up to n2 edges [21]. Further, by reducing
k-IET N to k-clique, we get an O(n0.792k) time algorithm for k-IET N .

I Theorem 10. k-IET N is LBL-reducible to k-clique with O(n2) instance blow-up.

Proof. Let a list of tree shaped NFA’s {Ni}i∈[k] be given. Each NFA has at most m
branches. From all the NFA’s combined, there are at most k ·m branches. We construct a
graph G where each vertex represents a branch. As a result, G has k ·m vertices.

Consider branches bi and bj . We say that bi and bj have a bit mismatch if there is some
character position where bi has a 0 bit and bj has a 1 bit or vice versa. Now, there is an
edge in G between bi and bj if the following are satisfied: bi and bj (1) have the same length,
(2) come from different NFA’s, and (3) have no bit mismatches.

We argue that the NFA’s have a non-empty intersection if and only if G has a k-clique.
First, if the NFA’s have a non-empty intersection, then there is a string that is accepted by
each of the k NFA’s. Further, the string determines a branch through each of the NFA’s

5 The notion of a parameter-preserving reduction from [12] is weaker only requiring that f(k) = poly(k).
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where the resulting branches contain no bit mismatches. As a result, the k branches form
a k-clique in G. Second, if G has a k-clique, then there are k branches (one for each NFA)
such that there are no bit mismatches. Therefore, for each bit position, either a 0 or 1 bit
is consistent with all k branches. As a result, we can select bits to form a string that is
consistent with the k branches. This bit string will satisfy all of the NFA’s. J

In the preceding reduction, given an instance of k-IET N with total size n, we construct a
k-clique instance with at most n vertices and n2 edges.

I Corollary 11. For all k ≥ 3, k-IET N is solvable in O(n0.792k) time.

4.3 Multi-Parameter Equivalences
We show that for all fixed c, the following three problems are LBL-equivalent to (c, k)-IET D.

Intersection non-emptiness problem for k tree shaped NFA’s over the input alphabet [c].
We abbreviate this problem by (c, k)-IET N .
c-Uniform k-hyperclique: given a c-uniform hypergraph H, does there exist a complete
hypergraph with k vertices in H?
k-Weighted c-CNF satisfiability: given a c-CNF boolean formula φ, does there exist a
satisfying assignment for φ with exactly k ones?

First, by observing that every DFA is an NFA, we get the following proposition.

I Proposition 12. For all fixed c, (c, k)-IET D is LBL-reducible to (c, k)-IET N with O(n)
instance blow-up.

Next, we reduce intersection non-emptiness for tree shaped NFA’s to the clique problem.

I Theorem 13. For all fixed c, (c, k)-IET N is LBL-reducible to c-uniform k-hyperclique
with O(nc) instance blow-up.

Proof. Let a list of tree shaped NFA’s {Ni}i∈[k] over input alphabet [c] be given. Each
NFA has at most m branches. From all the NFA’s combined, there are at most k ·m branches.
We construct a c-uniform graph H where each vertex represents a branch. As a result, H
has k ·m vertices.

Consider a set of c branches. For each branch and character position, we get a set of
possible characters from [c]. In other words, for each character position, we get c subsets of
[c] where each subset is associated with one of the branches. Now, there is a hyperedge in
H between a set of c branches if the following are satisfied: (1) the c branches all have the
same length, (2) no two branches come from the same NFA, and (3) for each position, the
corresponding c subsets of [c] have a non-empty intersection.

We claim that the NFA’s have a non-empty intersection if and only ifH has a k-hyperclique.
First, if the NFA’s have a non-empty intersection, then there exists a string that satisfies all
of the NFA’s. This string determines a branch for each of the NFA’s where the branches
form a k-hyperclique in H. Second, if there exists a k-hyperclique, then there are k branches
such that for every choice of c branches and every character position, the corresponding c
subsets of [c] have a non-empty intersection. Therefore, for every character position, the
corresponding k subsets of [c] must also have a non-empty intersection or else we would be
able to pick c of the k subsets to get an empty intersection. As a result, for each position,
we can pick a character in the non-empty intersection. These choices of characters form a
string that is accepted by each of the NFA’s. J

Now, we reduce the clique problem to weighted CNF satisfiability.
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I Theorem 14. For all fixed c, c-uniform k-hyperclique is LBL-reducible to k-weighted
c-CNF satisfiability with O(nc) instance blow-up.

Proof. Let a c-uniform hypergraph H with vertices {vi}[n] be given. We construct a
c-CNF formula φ with n corresponding variables {vi}[n] and up to O(nc) clauses. For each
set S of c vertices from H such that S does not form a hyperedge of H, φ has a corresponding
clause. This clause consists of literals v̄i such that vi ∈ S. As a result, the clause fails to be
satisfied exactly when the c variables are assigned the value 1. Now, it remains to show that
H has a k-hyperclique if and only if φ has a weight k satisfying assignment.

First, if H has a k-hyperclique, then we can assign the corresponding k variables the
value 1 and the remaining n− k variables the value 0. Consider an arbitrary clause Ci of
φ. The weight k assignment must satisfy Ci or else we would get that the corresponding
c vertices do not form a hyperedge of H yet are still members of the k-hyperclique which
is a contradiction. Second, if φ has a weight k satisfying assignment, then we consider the
corresponding set S of k vertices. Since all of the clauses were satisfied, none of the clauses
could have only contained variables corresponding to vertices from S. Therefore, every subset
of c vertices must form a hyperedge of H. J

Finally, we reduce weighted CNF satisfiability to intersection non-emptiness for tree
shaped DFA’s.

I Theorem 15. For all fixed c, k-weighted c-CNF satisfiability is LBL-reducible to (c, k)-
IET D with O(n3) instance blow-up.

Proof. The reduction is related to the reductions from Theorem 8 and 9. Let a c-CNF
formula of size n be given. We construct k tree shaped DFA’s each with at most n3 states
such that the formula has a k-weighted satisfying assignment if and only if the DFA’s have a
non-empty intersection.

The DFA reads an encoded k-weighted variable assignment followed by a clause assignment.
The k-weighted variable assignment is encoded as a sequence of k bit strings each of length
log(n). Each bit strings represents one of the k variables that are assigned the value 1. Then,
the clause assignment is a sequence of characters from [c] where the ith character in the
sequence represents a choice of one variable from the c variables in the ith clause.

Let i ∈ [k] be given. The ith DFA will only branch based on the ith and (i+ 1)th bit
strings from the variable assignment. This will lead to n2 branches each of length up to n
for reading the clause assignment. The DFA will verify that when bit strings are interpreted
as numerical values, the ith bit string is less than the (i+ 1)th bit string. The branching can
then be interpreted as storing the ith variable that is assigned the value 1 followed by all
variables assigned the value 0 up until the (i+ 1)th variable that is assigned the value 1. As
a result, this DFA now has one of k blocks that make up the variable assignment.

Next, the DFA reads the clause assignment and will only pay attention to characters for
clauses that the block fails to satisfy. For such clauses, the DFA will make sure that none of
that blocks characters are read. Since the alphabet is [c], this requires no branching.

Together, the DFA’s each branch based on a block of the assignment and together verify
that we never have all k blocks failing to satisfy a clause. As a result, we get that their
intersection is non-empty if and only if there exists a satisfying assignment. J

By combining the reductions carefully, we can guarantee that we have at most an O(n3c)
instance blow-up between any two of the problems.

I Corollary 16. For all fixed c, the following are LBL-equivalent with O(n3c) instance blow-up:
(c, k)-IET D, (c, k)-IET N , c-uniform k-hyperclique, and k-weighted c-CNF satisfiability.
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It is known that for all fixed c ≥ 2, weighted c-CNF satisfiability is W [1]-complete
[5]. Further, by the equivalences from Corollary 16, we observe that for all fixed c ≥ 2,
(c, k)-IET D, (c, k)-IET N , and c-uniform k-hyperclique are also W [1]-complete. Although,
the fine-grained analysis of these problems is much more telling than the observation of their
W [1]-completeness because the typical notion of fpt-reduction is quite weak in comparison
by failing to preserve the parameter and not including details on the instance size blow-up.

5 Conclusion

We showed that not only is intersection non-emptiness for tree shaped automata NP-complete,
but it is also both ETH-hard and SETH-hard. In particular, in Theorem 6, we showed that
if k-IET D is solvable in O(no(k)) time, then ETH is false. Then, in Theorem 7, we showed
that if 2-IET D is solvable in O(n2−ε) time, then SETH is false.

Further, we investigated the complexity of intersection non-emptiness for tree shaped
automata over larger input alphabets. In Theorem 8, we showed that if there exists k such
that (k, k)-IET D is solvable in O(nk−ε) time, then SETH is false. Finally, in Section 4, we
presented LBL-reductions to show that for every fixed c, intersection non-emptiness for k
tree shaped automata over the input alphabet [c] is equivalent to k-weighted satisfiability for
c-CNF formulas and k-clique for c-uniform hypergraphs.

Although we were able to show that (2, k)-IET D is solvable in O(nk−ε) time in Corollary
11, we were unable to show that there exists k such that (3, k)-IET D is solvable in O(nk−ε)
time. As a result, we suggest that one may be able to prove more conditional lower bounds
for the (c, k)-IET D problems.

Further, the faster algorithm for (2, k)-IET D breaks down if we allow one of the DFA’s to
be acyclic. Consider intersection non-emptiness for one acyclic DFA and k − 1 tree shaped
DFA’s over a binary input alphabet. We can carry out a variation of the reduction from
Theorem 8 to show that the existence of an O(nk−ε) time algorithm would imply that SETH
is false. In particular, instead of assigning each clause a character from [k], we would assign
each clause a bit string of length up to k. Such a bit string would represent which blocks
force the clause to be satisfied and which blocks don’t.
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